农业气候相似原理_气候与农业生产
1.搜集世界不同地区的居民、服饰、饮食,并说明与气候的关系?
2.全球变暖的原因
3.理论生态学的理论生态学成就
4.全球气候变暖到底跟二氧化碳排放有没有关系?
5.农业地质学是地学和农学相结合的桥梁
6.几种生态农业模式
7.植物过冬的方法是什么?
生态农业的优点:
生态农业强调发挥农业生态系统的整体功能,以大农业为出发点,按“整体、协调、循环、再生”的原则,全面规划,调整和优化农业结构,使农、林、牧、副、渔各业和农村一、二、三产业综合发展,并使各业之间互相支持,相得益彰,提高综合生产能力。
生态农业的缺点:
1、理论基础上不完备
生态农业是一种复杂的系统工程,它需要包括农学、林学、畜牧学、水产养殖、生态学、资源科学、环境科学、加工技术以及社会科学在内的多种学科的支持。
2、技术体系不够完善
在一个生态农业系统中,往往包含了多种组成成分,这些成分之间具有非常复杂的关系。例如,为了在鱼塘中饲养鸭子,就要考虑鸭子的饲养数量,而鸭子的数量将受到水的交换速度、水塘容积、水体质量、鱼的品种类型和数量、水温、鸭子的年龄和大小等众多条件的制约。
3、政策方面存在着需要完善的地方
如果没有政府的支持,就不可能使生态农业得到真正的普及和发展。而政府的支持,最重要的就是建立有效的政策激励机制与保障体系。虽然中国农村经济改革是非常成功的,但是对于生态农业的贯彻,还有许多值得完善的地方。
扩展资料:
生态农业的规定:
作为生态产品必须符合“国际生态农业协会(IFOAM)”的标准,如产品如何生产,哪些物质允许使用,哪些物质不可使用等等。生态产品在生产过程中,其原料必须是生态的。所采用的附加料如在生产过程中必须使用,则允许部分附加料来自传统农业,但不得高于25%。
一旦使用了传统农业附加料,则应在产品中标明使用的比例。只有95%以上的附加料来自生态的,才可作为纯生态产品出售。某一企业欲加入“生态农业协会”,将其产品作为生态产品销售,必须经过3
年的完全调整方可。
百度百科—生态农业
搜集世界不同地区的居民、服饰、饮食,并说明与气候的关系?
植物在长期进化的过程中,遇到多变的气候环境或者土壤环境,会自组织地调整自已的行为,启动不同的基因,产生不同的生理生化代谢系统,以适应环境的变化,以确保自身物种生存与繁衍,这就是植物的生态适应性<1>。这种适应性是任何生物都存在的,是物种生存的前提条件,如果没有这种适应性,也不会有物种的进化与生物多样性的形成。这些适应性的形成可以促进同一物种不同生态类型的形成,促进植物种类的分化,促进新物种的形成。这种适应性的形成是在外界信号扰动下,通过植物自身自组织行为而形成的适应性表现,可分为改变遗传的适应性,与只改变生理生化与形态发育变化的适应性两种,如果环境持续与长期的变化刺激就会渐渐转化为可遗传的适应性,这就是新物种的产生过程。而在环境偶变的情况下形成的适应性只能在某个阶段或当世代表现,不会有适应性的遗传,但不管是哪种适应性的形成,都必须在环境给予一定刺激,特别是胁迫刺激时,才会形成新的适应性跃变。也就是需达到一定的量变程度时才会发生质的变化,从而诱发新的功能或新的形态特征。其实从物理学角度来说,它是一个混沌而至有序的过程<2>,是植物而对外界环境刺激时所表现的自组织过程,也是环境胁迫形成进化驱动力所形成植物自身适应性的过程。
这些生态适应性与自适应性普遍存在于自然界中,早就被植物研究者所发现,也被生产科研者所运用,如利用这种自适应性进行引种驯化,抗性诱导,品种选育等。在人工诱导上用得较早的就是引种,如苏联科学家米丘林在这方面的研究成就颇丰,早在50年代时,它的引选理论曾被广为推行。而引育现代的手段已可借助人工环境模拟技术,或者进行组织细胞诱选方法所取代,大大加快了进程,缩短了时间,使植物生态适应性能在人工环境下迅速被得以诱导与筛选,在生产上具有极为重要的意义。本文着重利用生物生态适应性机理,模拟人工环境,促进植物生态生理生化与形态的变化,以期达到服务于生产与科研的目的,现就生态适应性在植物水生诱导技术上的运用作些阐述,让人们充分认识到植物所具有的强大潜能与普遍存在的生态适应性,让人们认识到不仅仅是自然环境是生物多样性与适应性形成的主要动力<3>,而且人工环境更是实现适应性形成最为便捷的路径,通过水生诱导技术的科研实践,充分证明了达尔文进化论中的渐变理论,与植物在生态自适应上的普遍规律。
不同环境形成不同的植株形状与根系形态
植物形态与生存环境之间是一种相互而协同进化与适应的关系,什么样的环境就会形成与演化为什么样的生物,同一的物种在不同环境下就会演变为不同的种类,如北极熊的祖先是棕熊,由于冰川时期到来,使部分棕熊为适应寒冷环境而演变为北极熊,在毛色上变成为与北极环境相适的透明冰雪色,皮下脂肪大量积累,表现为与生存环境的协同进化关系。植物也一样,同一物种的植物,因外界环境的变化或地理变迁而使物种发生分叉发育与新种的形成,从这些现象都证明环境因子对物种输入不同的物质能量与信息刺激,都会使生物产生不同的生理生化与形态发育上的扰动,从而出现进化或发育分叉,最后形成一种适于该环境的稳定系统结构,形成了适于该环境特征的生物新种类或新特征。这个过程也符合了生物的混沌进化论与自组织的适应行为<4>。
在人们生产生活中,植物的自适应其实也是到处可见,如长于平原深厚土壤的植物,高大挺拔而直立地生长,处于山顶瘠薄石缝中的植株即矮小而嶙峋,极具耐风抗雪性。再如栽培盆中的植物与种于大田的植物相比,同样的品种而形成不同的大小与不同的形态特征,这些都是环境造成表现型的差异,而非遗传变异,但如果这种环境的变化与刺激长期持续地影响,也会发生遗传上的变异,形成了适于高山或盆栽的种类,这是需要一个持续渐进的量变才会导致质变的发生。但也存在诸如突变之类的生物跃变现象,这其实也是植物处于外界刺激后,处于非平衡态所表现出的分叉突变。从进化的突变论及生物进化混沌理论都支持与证明了这种突变现象,它的发生是植物处于环境刺激下,所产生的微小涨落被系统放大的结果,蝴蝶效应就是气象学上微胀落所引发的系统巨变<5>。
植物的根系也具有极强的生态适应性与发育上的可塑性,长于沙漠中的植物因根系环境的干旱而形成了向纵向发展与横向扩张的广阔根域,其中一种骆驼刺的植物根系深达20米,根冠比极大。而长于热带雨林气候环境下的植物,根系分布广但不深,甚至是错纵交叉浮长于土壤表面,以达到吸收更多空气中氧气的目的,有些还在树干上长出大量的呼吸根,这些根系形态形成都是为了适应雨林气候下的淹水或高湿环境,因浮于表面的根系与树干上的气生根可以从空气中摄取更多的氧气。生长于淤泥中的莲藕,原本也是陆生植物,由于沼泽环境的渐进形成,而让它渐渐成为水中的挺生植物,在形态上发育上形成了发达的通气组织,以缓解根系及茎的氧气不足问题,让它能在低氧的环境下正常生长,可由叶片向水中的组织输氧与贮氧<6>。这些现象说明环境是影响根系与植株形态的最为重要因素,人们在生产上可以利用这些机理,进行了不同栽培环境下,促发形成不同的根系,适应于不同的栽培模式。如对于农作物及经济植物的水培及气培,就是在人工环境创造上的一种运用,同样的植物,在气雾环境下,形成大量具有强大呼吸功能的气生根根系,在水培环境下则形成根毛退化通气组织形成的水生根根系。在土壤环境下则形成组织致密机械抗阻力强的陆生根根系,这些形态的变化都是基于同一遗传性状下不同的生理生化及形态发育的一种适应。生产上可以运用这些原理,进行不同的环境模拟创造,培养出适于人们生产生活要求的不同形态及观赏效果的生态适应型植物,当前的水培花卉就是运用了植物强大的生态适应性机理,在人工环境下实现所有植物的水生栽培,实现水培过程的营养液静止化培育,解决与适应了静止少氧环境下的植物生长问题。
植物生长于一个静止的水中,常处于一种氧气胁迫的环境下,在这种环境下必须产生如莲藕般的通气组织,才不至于让根系缺氧烂根,这就是当前静止水培花卉栽培与诱导要解决的首要技术问题,也就是花卉的适应性诱导问题。当然人工栽培的花卉需追求经济效益与生产上的季节性,不可能采用时期过长的自然气候诱导,它必须根据植物生态适应性与诱导过程中生理生化的变化特性,来进行人工环境的模拟创造,实现花卉植物对于静止水环境下自组织地产生适应性的通气组织根系,这就是以下要讲述的植物水生诱导技术。它被广泛地运用于水培花卉的诱导与培养,具有广阔的市场空间与实际生上意义。
植物水生诱变技术是实现陆生植物过渡成为水生植物的一项重要技术措施。
植物水生诱变是生产水培花卉的一种手段,是实现植物根系水生演变的一项主要技术路径。植物能在静止的水环境中生长(通常是在静止的盛水玻璃容器中生长),关键在于水生根系的形成与通气组织的发育。自然界能生长于水中的植物较多,有一直在水中进化而成的各种水生、浮生、挺生等植物,也有生长于水边的两栖植物。这些植物与陆生植物最大的区别就是它们都具有发达的通气组织<7>,这些组织分布于根中及地下茎中,甚至植株的茎干与叶片中,而且最为明显的特征,就是形成了独具特色的水生根系,这些根由于长期生于水中,已退化为没有发达根毛的不定根根系,大多为须状根,因为在水中获取水分与矿质营养极为方便,不需像陆生根一样要形成一个主次根分明且网络状分布机械组织发达的根系,它可直接吸收水与营养。而土壤中则需通过扩大根面积来摄取环境中更多的水份与营养,所以陆生根形成了具有多级分叉与众多根毛的根形态。另外,水生根由于不需阻抗像土壤环境的生长阻力,根细胞壁无需加厚或木栓化形成致密坚硬的组织结构,它能保持较多的薄壁组织,所以水生根从色泽上要淡或洁白,是与陆生根根色上最大的区别。植物在这样的环境下自然形成了根毛退化,组织脆嫩,分叉减少、一级根数增加、须状着生的不定根根系,这些根形态的不同可以用来区分当前水培花卉的真假。
植物对环境的适应不管是漫长的进化,还是发育上阶段性的演替,都以环境渐变的方式较好,虽然也存在突变,但机率较小,在生产上的运用难以提高成功率,如把植物直接泡于水中,也有部分能适应,但大多数会烂根而死。植物对渐变的环境具有较强的适应性,如农业生产上的炼苗以及抗逆诱导都采用渐变的方法。据进化论研究,当时恐龙的灭绝很有可能也是环境骤变,没有让它形成生态适应性的过渡而造成物种消亡<8>。根据植物水生诱导的机理,创造有利于生态适应性形成的渐变环境是极为重要的,按照植物对水份的不同要求,大致可分为水生、湿生、与陆生植物,这三种不同生态型的植物都代表了不同渐变着的生态环境。如何让一株陆生的植物能适应于水生环境,最好的技术路径就是让其环境水份慢慢过渡变化,这样诱导成功率更高,对植物的生理损伤最小。这种过渡的梯度变化环境需采用人工的方法实现,这就是农业生产技术所需研究的课题。植物在不同的水份环境下,实现了以下三种不同根系的渐进演变,在高湿度环境下,形成具有发达薄壁组织的不定根根系,进入水环境下则形成水生根根系,再进入氧胁迫的水环境中则形成具有发达通气组织的水生根根系,这些渐变的过程可完全实现人工控制,这就为植物水生诱变技术体系的形成奠定了理论基础。
通气组织是植物为了适应厌氧胁迫环境而形成的具有氧气贮藏及运输功能的植物组织,在自然界的植物中普遍存在,特别是水生与湿生植物的组织内特别发达,存在于根、茎、叶中。而陆生植物如受水淹时,也会形成通气组织以适应厌氧环境,如玉米、水稻、小麦等农作物,在遇水淹涝害时,就会形成大量通气组织以抵制自然灾害<9>。那么植物通气组织在植株抵御环境氧胁迫时有哪些作用呢?平常陆生植物根系的氧气代谢大多是根系直接从土壤空隙中获取氧,它的摄氧过程是以横向为主的,而水培或水生植物的根系,是处于氧气含量较少的水环境中,它的获氧途径是横向纵向并存的,在水中溶氧充足的养液循环水培中,植物根系还是以横向直接从水中摄取溶解氧为主,而在静止的水环境中生长的植物,其根系摄氧的路径除了横向外,还需依赖根系及茎中形成的通气组织,实现纵向的氧气传输,可以把植物枝叶或露于空气中的根系获取的氧输送至浸没于水中的根系部份,使植物的根系能适于缺氧的静止水环境。当前的静止水培花卉就是利用这个机理来实现植物静止瓶栽的。以下就如何采用人工方法诱导植物通气组织形成,实现绝大多数陆生植物的水生栽培,为丰富水培花卉品种,提高水培花的水生适应性展开技术上的论述。
只有薄壁组织的不定根才能诱导成具有通气组织的水生根。
通气组织是存于植物体内的薄壁组织,这种薄壁组织具有疏松的细胞间距与大量细胞壁被分解溶化了的细胞组成,还有些是由植物细胞自身自杀死亡而形成的通气腔或孔,由这些构成了具有纵向输送氧气能力的输导组织。为什么通气组织不是由机械组织或厚壁组织细胞发育而来呢?这与细胞组织特性有关,这些组织细胞壁厚而排列致密,难以在诱导过程中发生继续的分化,难以在酶的作用下发生细胞壁的分解溶化,难以让其发生程序或非程序性的自杀死亡,因为厚实的细胞壁纤维组织分解溶化较难。所以只有薄壁组织才具有分化成通气组织的可能,这些通气组织又因植物种类与形成的条件不同分为溶生性与裂生性两种<10>,其中裂生性大多是原本就是具有通气组织形成能力的一些湿生或水生植物,它是在遗传基因自身的启动下而发生大规模的程序性自杀死亡而形成气腔气室或通气管道。而一些原本陆生植物因环境胁迫所表现的自适应性引发的生理过程,产生的通气组织大多属于溶生性通气组织,它是因环境胁迫诱发体内生理生化变化,形成大量的纤维素酶,促发薄壁组织细胞发生细胞壁的分解,从而形成了串联于组织上下的通气管道,这些称为溶生性通气组织。也就是说裂生是遗传所控制的本能,伴随着细胞分裂进行的,而溶生性是环境胁迫而启动一些原本不会被激发的基因,而发生细胞壁分解的自适应过程。作为水培花卉的人工生产,大多是利用后者,把一些原本陆生的不具通气组织的植物经环境胁迫而激发隐藏的基因,达到通气组织形成的目的。
植物的细胞壁是由纤维素组成,而薄壁组织比厚壁组织或者木栓化的组织更易在纤维素酶的作用下分解穿孔而形成通气束,而原本生于土壤中的陆生植物根系因环境因素而使根系的细胞壁加厚与致密化,既使把它置于水中,也难以让其形成通气组织,这就是为什么要选择具有薄壁组织的不定根根系作为水生诱导基础的原因所在。另外薄壁组织的不定根根系具有比机械化的厚壁组织代谢更旺,对环境刺激所作的反应更为敏感,因环境变化所引起的微涨落更易得到放大,更易激发相关基因启动的特性<11>。在生物的混沌进化理论中原初细胞对外界的信息物质能量刺激更具敏感性,同时须状的不定根根系比陆生植物的初生根与次生根有更强的胁迫适应性,在自然界中如遇土壤淹水都会在植株的基部诱发大量的不定根,在植物根茎受损的情况下也会作出相似的反应,不定根的形成也是植物抗逆性形成的生理反应<12>。
根据这些机理,在进行水生诱导前,必须把培养植物不定根根系作为技术实现的第一环节,只有培育出了具有薄壁组织的不定根根系,才能让其在胁迫环境下产生通气组织,方可成功诱导。
胁迫环境的模拟创造是实现水生根形成通气组织发育的重要外界条件。
根据植物通气组织的形成机理,要让薄壁组织细胞的细胞壁分解而串联成通气管束或贮气腔,关键在于诱发植物体内产生大量的纤维素酶,在它的作用下才能让纤维素分解,而植物体内纤维素酶的形成需在乙烯的诱导下才能形成<13>。而乙烯这种物质是植物体内一种最为敏感与传导速度最快的信号物质,同时也是当植物遇到胁迫环境时,产生应对不良环境的一种应激激素,它可以在植物任何部位产生,可以进行快速的传导或者促发体内相应抗逆机制的建立。一切创伤胁迫,病菌感染、高温危害、淹水洪涝、厌氧危胁等不良环境刺激都会导致植物体内产生乙烯这种信号物质<14>,实现体内传导甚至植株间的传导。
所以胁迫环境的创造就成为诱导通气组织,促发形成相关生理生化机制最为重要的技术环节,对于一株原本生长于土壤中的陆生植物,原来的陆生根系对于乙烯的响应是不甚敏感的,需对其进行去根处理,也就是把陆生根切除。这样可激发形成因创伤而诱导的不定根根系,植物在去除根系后,会因补偿生长与维持平衡需要,激发受伤部位或切口重新长出新根,作为这些新长出的新根具有发达的薄壁组织,可以作为诱导通气组织的基础。可是如果让这些新根在陆生并相对干燥环境下生长,极易老化而很快表现出陆生根性状,但如果让其在高湿度环境下生长,就可促发更多的不定根并且能保持洁白的薄壁组织性状,这些根同时也具水生根的特性。通常植物在高湿度环境下生长的根系对于水份的适应性会更强些,这就为下一步的诱导创造了适应性过渡的基础。在进行植物去根时,剪切得越重促发的不定根越多,这除了与补偿生长有关外,最重要的是机械创伤促发了体内形成大量的乙烯,而乙烯对不定根的大量形成具有很大的促进作用,这在植物的快繁过程中也得以证明与体现。对于失去根系或重度剪切后的植株,会因失去吸收水分功能而萎蔫,所以在催发新根的过程中必须采用间歇弥雾的方法以维持水分代谢的平衡,在这个催根过程中,最好在具有计算机控制的智能化快繁苗床中进行,在这种苗床环境下,能使去根的植物快速生根,同时高湿环境为薄壁组织不定根的发育创造了最佳的环境条件,这方面的技术已在生产上被大面积地运用。
通过上述的去根与催根后,植物的根系发生了第一步形态上的变化,由原来多级分叉的陆生根发育为须状的不定根,并具有发达的薄壁组织与水生性状的一次根,通常植物或种子高湿环境下萌发时的一次根都较接近水生根性状。这种根形成后,还需继续保持高湿度的基质与空气环境,不能让其渐变发育成陆生根性状。这种薄壁组织的根系如继续发育会出现了两种可能性的分叉,如持续在高湿度环境下发育,可保持水生性状,如置于干燥环境中,可发育为机械组织发达的陆生根系,还有一种是气生根性状,这种是需让根系处于高湿度的气雾环境中才能形成。从混沌进化角度来说,这个阶段是根系处于非平衡状态下发生的分叉发育,这种分叉方向的确定最终需受环境的影响刺激才能成为稳定的有序化结构,而变为与刺激相适应的根系。此时如果作为气雾栽培就把它移至气雾室中助其发育为气生根,移栽土壤栽培就能发育为陆生根,进入水环境栽培就可为水生根。这些发育方向完全由环境决定,也就是因环境的不同而形成不同生态适性的根系。
经催根形成的不定根根系具有水生根的特性,但不能让其产生过多次生根,需在保持一次根或少有分叉时就要进入水环境中进行水生根的进一步发育诱导,这样才能稳定水生根的性状,否则继续留在催根苗床内,会渐渐变成陆生根系,或者老化变褐不利于下一步的水生诱导。进入水环境中,根系的环境又一次发生了变化,从高湿环境直接进入水环境,此时根系所处的环境由透气的基质环境变为溶氧相对较少的水环境,会表现出不适反应,这种不适的反应就是外界对根系刺激的开始,也是产生乙烯的促发因子<15>。也就是厌氧胁迫的开始,此时水中溶氧度的控制是诱导是否成功,通气组织能否形成的关键。在生产上大多采用标准化的水培床结合计算机控制作为诱导的场所,这些水中除了配有营养液外,还需结合水循环技术或曝气增氧的方法,使其溶入一定量的氧气,以满足根系呼吸所需。这个溶入氧的参数量极为重要,如过高的溶氧,没有给植物造成胁迫,根系发育与植株生长虽然较好,象平时的水培蔬菜生产一样,虽能长出洁白发达的水生根,但这些根不具发达通气组织,它摄氧的途径主要还是依靠横向直接从水中吸收,这样的植株如移于静止的水培容器环境还会因缺氧而烂根,还不能适应将来的静止水的厌氧生态环境。但是对于刚移入水培床的植株对低氧胁迫的抗性还较弱,不宜立即把溶氧降至很低,否则当低于临界值时,根系会因缺氧而烂根。所以此时,从人工环境控制技术角度来说就需解决氧气梯度变化问题,为水生不定根系创造一个渐渐降低溶解氧的变化环境,不让其处于最适,也不让其致死。随着通气组织的形成发育而渐渐降低水中溶氧,一直达到静止不循环或不增氧的状态,此时根系已完成了通气组织的发育,已形成了对静止水少氧环境的生态适应性,通过这个过程后就可移入玻璃瓶或水培容器中进行静止水培,这样一株具有通气组织且适于在静水中长期生长的水培植株就算培育成功了。
在这个氧气梯度变化的人工控制环境下,让植物发生了渐变与过渡,但在技术实施上还需借助先进的计算机控制技术,需对水环境进行实时在线的溶氧检测,当溶氧低于临界值时就开始增氧,达到即停。不宜过高也不过低,过高让根系处于充足氧环境不能诱导体内信号激素乙烯的形成,过低缺氧又会烂根,所以就个临界及梯度变化值的设定需按照不同的植物而定,原本生长于较干旱土壤中的陆生植物,起始界临值可高些,原本生长于较为潮湿环境下的植物种类起始临界值可低些。另外,采用计算机控制可以让多变的溶氧参数得以有效的控制,因为水中的溶氧量是因水温及外界大气压及栽培植物的不同生长阶段而发生动态变化的,如果没有传感器的精确测检控制凭人工经验是难以实现梯度控制的。随着水生根系不断的发育,通常临界值的设定由6-8mg/l,----4-6mg/L----4mg/L以下,渐渐降低,直至静止水环境。这些参数可以在计算机上设定,然后按不同的根系发育阶段进行切换。通过这种精确的计算机控制方法,实现了自然环境下难以实现的环境渐变与胁迫过渡,从而成功地把植物的根系适应性诱导成能适合静止环境下栽培的真正水培花卉。
另外,从环境胁迫及根系适应性形成的研究中发现,植物对于根域环境的营养丰缺度不同,也影响根系的生长速度。当根系环境中矿质营养充足时,根系的生长速度会减慢,也许植物无需太多太长的根系就可满足生长需要时,它就会减缓生长速度,让更多的营养供给枝叶的生长。当水中营养浓度降低时,反而能刺激根系的快速生长,但也不能过低,否则会影响矿质吸收与植株生长。在诱导中可以人为地降低营养液中的EC值,促发快速形成发达的水生根,这对于提高水培植物的观根性是极为有效的。在EC的有效控制上也可结合EC值传感器与计算机自动控制技术来实现,刚移栽时可以低于适宜浓度值一般以0.3-0.5或者0.5-0.7为佳,以后渐渐提高,直至水培植物生长的适宜浓度1-1.2或更高为止。这个过程也是环境营养胁迫造成根系生态适应性自组织调节生长速度的一种具体表现。
上述提及的根系通气组织形成是技术关键,是生态适应性表现最为重要的部份,其实在生产科研中发现,随着厌氧胁迫环境的创造,植株的其他组织器官也会发生相应的变化。因乙烯的作用会使植株的根茎部份明显的膨大,会使叶片的生长出现偏上生长性,而导至叶片微垂或向下弯曲生长现象,还会使叶片变薄表面积变大,这在许多草本植物的诱导上表现特别明显。其实这也是植株在乙烯作用下,也在形成通气组织而发生的系列生理生化与形态的变化。
植株的水生诱导过程是在胁迫环境下实现植株发生生理及形态兑变的过程,一旦诱导完毕,这些植株就具有了水生植物的特性,不管是木本草本或沙漠植物皆能在水中生长,而且它的根系变得纤长飘柔而洁白,完全有异于原先色泽深而坚硬的陆生根系,但这种根系一旦诱导成功,它也只有在水环境中生长了,再如果移至土壤环境就不再有适应性,这就是不同的环境会造成不同的植物生理与形态,所以环境是植物发育与进化的主要外在动力,没有环境的变化就没有物种进化与植物自适应性的形成,植物水生诱变技术就是充分运用了植物对环境的自适应性,从而形成了对特殊环境的生态适应性。
极怕水的植物也能实现在水中生长,充分证明了植物所具有的强大生态适应性。
另外,从达尔文进化论来说,所有陆生植物都是从水生植物进化而来,是植物为了适应不同的环境而形成了不同生态适应性的丰富植物种群。从这个理论来说,其实所有植物都具有能在水中生长的能力与潜能,只是环境的变化而让它形成了适合于陆生环境下的各种形态与生理性状,由于长期的作用而固化为植物可遗传性状,一旦环境的变化还可以激发体内相关的潜在基因让其表达而形成相应的水生形态与性状。运用这一理论与人工环境模拟控制技术结合,可以实现所有绿色植物的水生栽培与静止水培,就是平常认为许多最怕水的木本植物也可在水中自由生长。这些笔者也已通过实践得以有效的证明,如最为怕水的桃树及铁树,经诱导后不仅能在水中长,而且桃树还能正常开花结果。最喜干旱的仙人掌科植物,经诱导后比在陆地长得更好。现以桃的诱导为例,简述人工模拟环境下,桃树根系适应性形成的过程与操作流程。
全球变暖的原因
地理课是中学生认识地理环境、形成地理技能和可持续发展观念的一门必修课程。我国将初中地理课程的总目标定位为:通过初中地理课程的学习,了解有关地球与地图、世界地理、中国地理和乡土地理的基本知识,了解环境与发展问题;获得基本的地理技能以及地理学习能力;使学生具有初步的地理科学素养和人文素养,培养爱国主义情感,形成初步的全球意识和可持续发展观念。所以,地理课对于提高中学生的综合素质具有非常重要的意义,学好地理很有必要。
地理学是研究地理环境以及人类活动与地理环境相互关系的一门科学。地理学的研究对象,决定了它具有两个突出特点:第一,综合性。上至宇宙空间,下到地球内部,还有我们生活的人类社会,这些都是地理环境的重要组成部分,也都属于地理学的研究范畴。所以我们说,地理学是一门兼有自然科学与社会科学双重性质的综合性科学。第二,地域性。不同地区,地理环境是不同的。地理学研究的正是地理环境的差异、分布规律及其成因。
除此之外,地理学还具有极强的实用性。地理与人们的生活密切相关,我们可以在生活中观察到许多有趣的地理现象,在生活中学到许多有用的地理知识;反过来,我们还可以运用所学的地理学理论指导我们的实践活动。
不仅如此地理学在现代科学中占有重要地位,对于解决当今世界所面临的人口、资源、环境和发展等问题起着重要作用。既然地理如此重要,我们怎样才能学好地理呢?有些同学认为,地理不难,关键是记性好,只要死记硬背就行;还有的同学认为地理课没意思,除了背还是背。其实不然,地理环境的发展变化是有规律的,人类活动与地理环境之间的关系也是有规律可寻的,地理学也有自己独特的学习方法和技巧。只要我们掌握了这些学习方法和技巧,我们就会学得既简单又有趣。
一、培养空间概念,学会正确的读图、用图方法。
种类繁多、数量巨大的地图是地理课区别于其他学科课程的突出特点,于是有人说,“没有地图就没有地理学”。只要掌握了正确的读图方法,培养良好用图习惯,形成基本的地理技能,你就已经掌握了学习地理课的最重要的工具。
首先,养成良好的读图、用图习惯。要知道地理知识不仅存在于课本的文字当中,也蕴含于地图之中。在地理学习中,我们要做到左图右书,注意随时运用地图,查阅地图,善于从地图中发现地理知识,寻找地理规律。长期坚持下去,你就能够做到眼中有字,心中有图,文字和图象有机结合在一起,形成正确的空间想象。
其次,要掌握正确的读图方法。读图要注意先后顺序,先看图名、图例、比例尺和方向,知道该图表现的主要内容、范围等,再观察图的具体内容。观察要仔细全面,不要漏掉每一个信息。
例一:在“经纬网图”上我们观察到的知识就有:
①我们在这幅图上可以看到有许多线,其中连接南北两极的线是经线,与经线垂直相交的线是纬线。
②经线与纬线的特点:所有的纬线都是圆并相互平行;纬线圈有长有短,赤道最长,向两极逐渐缩短,最后成一点。所有的经线都是半圆;长度都相等且相交于极点。
③指示的方向:经线指示南北方向,纬线指示东西方向。
④经纬度的变化规律是:0经线以东为东经度,0经线以西为西经度;自西向东,东经的度数逐渐增大,西经的度数逐渐减小。纬度以赤道为界,以北是北纬,以南是南纬;自北向南,北纬的度数由大到小,南纬的度数由小到大。
⑤经纬网:确定地球上某一点的位置。
例二:我们在《森林资源》一课中曾经学过的原理图,其图名叫做“护坡林带保持水土示意图”。我们以这幅图作为例子,讨论阅读原理图的几个主要步骤。
第一步,获取信息,是获取原理图中所显示的各种信息。在“护坡林带保持水土示意图”中,我们可以观察到有山坡、两道林带、降水和河流,一些不同粗细、不同颜色以及不同指向的箭头,还有 “微量清水入河”和“泥沙径流”等文字。
第二步,分析地图,是要分析我们在图中获取的各种信息和内容之间的相互关系。在图中我们可以看到:山坡从上到下,表示地表径流的箭头由粗到细,颜色也由深变浅,最后变成“微量清水入河”。这些说明了大气降水在从空中降落到地面的过程中,受到了林木枝叶、枯枝落叶层的阻滞,促使大量雨水下渗,导致地表径流流量不断减小,含沙量逐渐减少。护坡林降低了泥沙流失的程度,起到保持坡地水土的作用。
第三步,说明原理,明确原理图所说明的原理。这幅“护坡林带保持水土示意图”,说明了森林具有含蓄水源、保持水土的作用。
二、学会读书,掌握科学的读书方法。
地理教材是我们获取地理知识、提高地理素养的重要途径。怎样才能学好教材上的地理知识呢?我们应该注意把握以下几个要点:
1.读出书中有什么
阅读教材,首先要读懂,明白书中讲了些什么。比如,教材在介绍某个地理区域时,一般从构成这一区域的各地理要素分别进行论述。这个区域在哪儿?这里的自然概况怎样?经济发展情况如何?存在什么问题?等等
2.读出知识网络
地理环境是一个有机整体,组成地理环境的各个要素是相互制约、相互影响的,其中任何一个地理要素的改变,都可能影响到其他要素的变化。我们应该将理清这些地理要素之间的相互关系,在头脑中形成这一地域的知识网络。
例:通过世界地理的学习我们知道,南极大陆一块特殊的大陆,这里的地理环境特征与众不同,烈风、暴雪、严寒是南极大陆最显著的气候特征,这里有世界上面积最大的大陆冰川,动植物种类稀少,有极昼极夜现象,还有美丽的极光……等等。而形成这些地域特征的最关键的因素就是由于南极大陆绝大部分位于南极圈以以南的高纬度地区,其他诸多的地理特征都与这一要素紧密相联。
3.学会梳理知识
①教材对于同类知识的论述角度具有相似性和规律性
地理教材所涉及的内容具有范围广、信息多等特点,但是它对同一类型知识进行描述的角度和方法,具有很大的相似性和规律性。
例如描述一个国家或一个地区的气候特征,往往要从气温和降水两个方面来加以说明。而气温又包括着年平均气温、年温差和气温的分布等内容;降水主要是由年降水量、降水的时空分布所组成。
除了这一点外,我们还可以将差异性或相似性较明显的国家或地区,进行对比梳理。
②将差异性或相似性较明显的国家或地区,进行对比梳理
不同的国家和地区的地理环境或地理要素之间存在着明显的差异性或相似性。我们就可以根据这一点,采用对比的方法进行学习,对比差异性,找到相似性。如我们在学习印度和巴西、日本和英国、我国的南方和北方、长江三角洲和珠江三角洲、非洲和南美洲等地时,就可采用这种方法。
例:我国南方地区与北方地区,无论是在自然条件、经济发展还是在生活习惯方面都存在着明显的差异,如果我们采用对比的方法进行归纳和概括,那么南方地区与北方地区的诸多的差异便一目了然。
粮食
作物 油料
作物 糖料
作物 主要
水果 主要
能源 主要金属矿产 人们
主食 传统
交通
工具 运动
项目
北方地区 小麦 花生 甜菜 苹果
梨 煤、石油 铁 面食 马车 滑冰
滑雪
南方地区 水稻 油菜 甘蔗 柑橘
香蕉 水力 有色金属 大米 船 游泳
赛龙舟
我们不仅要明确两个地区或两个国家之间的差异,而且也要思考这些差异是怎样形成的。我国南方地区与北方地区的这些差异主要是由于所处的地理位置不同,导致了自然环境的差异。
我们不仅通过对比梳理找到差异性,我们还能找到相似性,如印度和巴西两个国家,虽然位于不同的大洲,但它们在许多方面具有相似性,利用对比归纳的方法,我们就能够将两个国家的主要的地理特征知识点梳理得一清二楚。
印度和巴西都是位于热带的临海国家;地形以平原和高原为主;优质的铁矿资源丰富;都是世界上著名的热带经济作物的生产国和出口国;近年来电子工业和信息产业得到了迅速发展,是发展中国家工业比较发达的国家。
三、培养地理思维能力
培养地理思维能力,是初中地理课程的重要目标,对中学生学好地理非常重要。
组成地理环境的各要素之间是相互联系、互为因果的,任何地理事物的发生发展都不是由单一的因素造成的,而是由多种因素共同作用造成的。但是,在这诸多的地理因素中,有某一、两个要素起着关键性的作用。我们应当学会找出这一关键性的因素,并以此为线索,将其他的各要素联系起来,从而正确理解各地理要素之间的内在联系。
初中地理主要侧重于区域地理的学习。一般来说,影响某区域的地理特征的最主要因素就是该区域的地理位置(也就是我们经常讲的区位因素),这一点从教材内容先后顺序中就已经明显地表现了出来。同时,在对每个区域的论述中,首先提出的也是该地的地理位置,位于哪个半球?什么纬度?海陆位置如何?有哪些邻国?等等。所以思考问题时应抓住该地的地理位置,以此为突破口,去分析其他地理要素的特征。
关于地理位置影响自然环境,最具有代表的地区是我国西北地区。与我国其他地区相比较,西北地区具有许多独特的地理特征。如沙漠广泛分布,人烟稀少,地表植被以草原、荒漠为主,河流湖泊多为内流河和内陆湖,动植物具有明显的耐旱特征,农业生产以畜牧业为主,灌溉农业发达……等,这些现象产生的直接原因是这里的大陆性气候显著,降水稀少,而造成降水稀少,气候干旱的根本原因又是这里“深居内陆”的地理位置。当然,“地形闭塞”也对西北地区干旱的气候起到了重要的作用。
理论生态学的理论生态学成就
1.人口剧增:
人炸是导致全球变暖的主要因素之一。同时,也严重威胁着自然生态环境的平衡。如此庞大的人口本身每年会排放出惊人数量的二氧化碳,其结果将是导致大气中二氧化碳含量的直接增加,由此产生的温室效应将直接影响地球表面的气候变化。
2.大气环境污染:
日益严重的环境污染已经成为一个重大的全球性问题,也是导致全球变暖的主要因素之一。在21世纪,对全球气候变化的研究清楚地表明,自上世纪末以来,地球表面的温度一直在上升。
3.海洋生态环境恶化:
海平面的变化呈现上升的趋势。根据专家的预测,到下个世纪中叶,海平面可能上升50厘米。不采取正确的措施将直接导致产生淡水资源的破坏和污染等不良后果。此外,大量来自陆地的有毒化学废物和固体废物不断排入海洋、海水发生重大漏油事件以及人类活动对海岸生态环境的破坏是使海洋生态环境遭到破坏的主要因素。
4.土地遭破坏:
农业生产不合理是造成水土流失和荒漠化的主要原因。众所周知,良好的植被可以防止水土流失由于过度砍伐树木、开垦土地用于农业生产和过度放牧,人类活动继续对植被造成破坏。土壤侵蚀降低了土壤肥力和保水能力,从而降低了土壤生物生产力及其维持生产力的能力。并可能造成大规模洪涝灾害和沙尘暴和生态环境恶化。
5.酸雨危害:
酸雨对生态环境的影响越来越受到世界各国的关注。酸雨会破坏森林,使湖泊酸化,危及生命。在20世纪,大多酸雨集中在欧洲和北美,发生在发达国家和一些发展中国家。
6.火山活动和地球周期性公转轨迹变动:
地球周期性公转轨迹由椭圆形变为圆形轨迹,距离太阳更近。根据某科学家的研究地球的温度曾经出现过高温和低温的交替,是有一定的规律性的。
扩展资料
全球变暖的危害:
1.生态环境受到破坏:
首先,全球气候变暖导致海平面上升,降水重新分布,改变了当前的世界气候格局;其次,全球气候变暖影响和破坏了生物链、食物链,带来更为严重的自然恶果。另外,有关环境的极端事件增加,比如干旱、洪水等。
2.气候灾害频发:
全球气候变暖使大陆地区,尤其是中高纬度地区降水增加,非洲等一些地区降水减少。有些地区极端天气气候事件(厄尔尼诺、干旱、洪涝、雷暴、冰雹、风暴、高温天气和沙尘暴等)出现的频率与强度增加。
3.人体健康受到影响:
全球气候变暖直接导致部分地区夏天出现超高温,心脏病及引发的各种呼吸系统疾病,每年都会夺去很多人的生命,其中又以新生儿和老人的危险性最大。气候变暖导致臭氧浓度增加,低空中的臭氧是非常危险的污染物,会破坏人的肺部组织,引发哮喘或其他肺病。还会造成某些传染性疾病传播。
参考资料:
全球气候变暖到底跟二氧化碳排放有没有关系?
1、提出气候变化对自然界种群、群落及生态系统影响的理论模型
由于人类活动引起的全球和地区变化将导致生物栖息地的改变,栖息范围及生物数量的波动。需要提出一个能预测这种生物变化的理论模型。其只对重要的有代表性环境变化的群落建模,通过这些摸型的行为来预测其它与此相似的生态变化。一类模型将着重于与气候有关的环境变量的时间有效性,这些变量对种群、群落动态的影响及生命历史特征的演化来建模。另一类模型则侧重于空间异质性及特定栖息地的种群统计学变化。最后将利用野外实验数据对模型进行检验。
2、功能性群落单元演化的理论及验证
构造可以揭示立体结构的种群及其物种间及物种中基因型间复杂相互作用的理论。研究的两个焦点是:(1)全球物种的多样性——种群的结构及复杂的相互作用所产生的综合效应,可以大大增加全球范围内共存物种的数量的了解;(2)功能性群落单元——复杂的相互作用可以增加亚群体中小区域的变异性,这可以作为在小区域水平上自然选择的原材料。 种群动态的研究,是经典生态学研究的核心问题之一,至今仍然是生态学中的重要议题。经典生态学研究的种群动态往往是在同质空间里研究,因而种群的平均密度就代表了这一区域的种群大小。然而自70年代以来,由于人为活动的干扰和栖息地的破碎化,种群在空间的动态越来越受到关注。
1、力图建立结构化种群动态模式
多少年来,Lotka-Volterra方程一直作为生态建模的基本摸型。基于它建立的方程和模型,产生了诸多如竞争排斥原理,以致最近有关食物网动态的概念等。但是,正如研究者早已认识了的,这些模型是对生态学上真实情况的一种简化表述。尤其是这些模型忽略了建模种群的内部结构(如:空间结构、年龄结构、生理结构、基因或表现型结构和/或可能的其它结构)。目前的研究正促进对结构化的单种群和多种群系统的理解。尤其要考查种群内部的两种结构。首先,要考查相互作用的年龄或生理结构种群的动态。其次,还要考查相互作用的空间结构种群的动态。
2、海洋种群理论
提出由:①分布于非均质空间、在海洋深处栖息的固着性成体及②周围水体的幼虫两部分构成的种群数学模型。这些模型探讨海洋生命历史的演化及海洋物种地区性共存的条件。
经典种群动态理论假定种群中新个体的出现是由于该种群中个体的繁殖。而这个假设对许多海洋有机体却不适用,因为在海洋中蚜虫可以从远距离水域飘移过来。这些有机体包括许多在生态(及经济)上最重要的物种。目前正力图提供三个有关种群增长的模型并进行分析。这三个模型分别为:依赖密度的统计模型;不依赖密度的统计摸型;介于二者之间的统计模型。每个模型表达种群增长问题的不同侧面,但它们又通过对增长的描述而联系在一起。
3、Meta-种群(Metapopulation)动态——集合种群
Metapopulation是当今国际数学生态学、理论生态学和保护生物学的一个主要研究前沿,其研究为濒危物种及种群的研究提供了新颖的理论依据,也为全球范围内的环境恶化和生境破坏对物种造成的伤害做出预测和度量,并与空间技术(3S,包括GIS、GPS和RS)相结合,为景观生态学提供深层次的生态与模型机理。它的兴起与蓬勃发展已使一个全新而又重要的生态学分支——空间生态学,突显出来,成为当今国际生态学的热点与前沿。
Meta-种群
一个大的兴旺的种群因环境污染、栖息地破坏或其他干扰而破碎成许多孤立的小种群,各局域(生境缀块)种群通过一定程度的个体迁移而使之成为一个整体,这些小种群的联合体或总体就称为Meta种群。关于 Metapopulation的中文翻译,却存在诸多争论,如复合种群,集合种群,联种群等。现在应用较多的是复合种群。Harrison 和 Taylor (1997)将复合种群分为五种类型:
A、经典型或Levins复合种群(classic or Levins metapopulations):由许多大小和生态特征相似的生境缀块(patch)组成,这类复合种群的主要特点是,每个亚种群具有同样的绝灭概率,而整个系统的稳定必须来自缀块间的生物个体或繁殖体交流,并且随生境缀块的数量变大而增加。这种类型比较少见。
B、大陆-岛屿型复合种群(mainland-island metapopulations)或核星-卫星复合种群(core-satellite metapopulations):由少数很大的和许多很小的生境缀块所组成,大缀块起到“大陆库”的作用,因此基本上不经历局部灭绝现象。
C、缀块性种群(patchy populations):由许多相互之间有频繁个体或繁殖体交流的生境缀块组成的种群系统,一般没有局部种群绝灭现象存在。
D、非平衡态复合种群(nonequilibrium metapopulations):在生境的空间结构上可能与经典型或缀块性复合种群相似,但由于再定居过程不明显或全然没有,从而使系统处于不稳定状态。
E、中间型(intermediate type)或混合型(mixed type)复合种群:以上四种类型在不同空间尺度上的组合。例如,一个复合种群由核心区(即中心部分相互密切耦连的缀块复合体)和若干边远小缀块组成,而核心区又可视为一个“大陆”或“核星”种群。
集合种群的研究主要集中在动态、空间结构与模式形成等方面。在Meta-种群动态的研究中,数学模型一直起着主导作用。目前已经发展了4种Meta-种群的灭绝风险模型:
A、经典Meta种群模型(Levins,1969年提出,又叫斑块占据模型):在这个模型中假设一定区域内包含许多相似的生境斑块,占据这些斑块的种群大小要么为0,要么为K(小斑块的承载容量),不考虑种群内部的动态,并且忽略各斑块的空间格局,每个斑块上种群的灭绝和定居是随机的。
B、大陆—岛屿meta种群模型:大陆—岛屿模型中存在一个或多个大陆种群,以及许多小的岛屿种群。岛屿种群由于种群较小,经常发生局部灭绝。而大陆种群则相对稳定,并且不断为小的岛屿种群提供迁移者。局部灭绝只影响局部岛屿种群、但对大种群没有影响。
C、斑块种群模型:这个模型中许多局部种群分布在块状并且(或)时空可变的生境上,斑块之间存在很强的扩散,将各斑块连成一个整体,因此局部小种群灭绝的可能性很小。在这个模型中,局部种群之间连接的类型和程度是关键因素。
D、不平衡meta—种群模型:分布在一定区域内的局部种群之间没有扩散或只有很小的、不足以与局部灭绝抗衡的扩散,因此局部的灭绝组成了整个meta种群灭绝的一部分,最后整个meta种群将灭绝。这种meta种群结构主要是由于再定居的频率很低造成的,而这往往又是长期片断化引起的,生境片断化增加种群问的间隔距离,这样由于没有个体迁入。局部种群很容易灭绝。许多局限于隔离小生境上的稀有物种,由于隔离生境间的距离很远,几乎没有再定居的发生,也是居于这种meta种群结构。
以上4种meta种群结构之间的区别,主要在于生境斑块面积的变化幅度和物种扩散能力两个方面。目前的研究应当是建立不同meta种群结构的划分标准,以为更好地了解种群实际存在的格局,进而为制定合理保护方案提供科学依据,从而避免保护中的盲目性。
在理论研究方面应进一步指出的是:斑块的异质化以及质量的变动都对meta种群动态和续存造成影响。meta种群的遗传学以及适应性进化方面的理论研究也有待开展和深入。另外meta种群理论和景观生态学、保护生物学的综合运用,对野生濒危物种的保护与管理措施的改善和修正也是一项新兴的交叉科学。
4、源-汇理论(Source-sink theory)
源-汇理论强调了种群结构和资源分布之间的联系。某些小生境是个体的净输出者,这就是源。而另外一些则是个体的净输入者,这就是汇。源-汇理论被广泛用于生态毒理学模型,农业生态系统结构模型,以及基于遗传的种群结构评估模型。
Meta-种群动态和源-汇理论之间的联系是十分明显的,它们之间的结合可能会对未来种群生态学和种群遗传学的发展带来光辉的前景。
5、种群对时空变化的响应
已知很多物种已经建立特别的进化机制或者采取某种生态策略以适应在其资源或者环境中的时、空变异。例如很多两栖类动物建立了多阶段的生活周期,以便能在陆地和水域里生存。Rezinick等以虹鳉(Guppy)为对象连续13年在特立尼达田间通过增加捕食者改变虹鳉的死亡率,然后再在实验室里在恒定条件下饲养两代进行比较,发现死亡率的增加会使虹鳉的成熟期提前,体形变小,生殖率增加,后代体形变小。Stephen在他的实验室里,以果蝇为对象,比较两种处理,得到结果表明提高成虫期的死亡率,会使雌虫提前9~12h发育,体重降低,而使前期生殖率增高,而后期生殖率降低,这些实验结果是和生活史对策中的繁殖力模型(Reproduction effect model)预测的结果完全一致。
生活史理论中的模型可能是生态学中最成功的模型。这正如Stephen所指出:“伟大的理论做出惊人的预测”,“生活史理论正帮助进化论成为像物理学一样建立在理论基础上的智能学科”。 (Laudscape/scaling dynamics)
1、在地区性及局部尺度下生态系统对气候变化的响应
气候是影响陆地生态系统结构功能及生产力变化的主要驱动力。预测全球气候变化及CO2升高对生态系统过程的影响是生态学家必须解决的问题。这便需要搞清在各种不同尺度范围内大气层与生态过程的相互作用。通过分层次建模途径来解决问题。力求保证在不同空间和时间尺度范围内预测的一致性,而这种一致性将极大地改善对全球尺度范围内气候变化的生态估价。
2 、对景观干扰及气候变化影响的模拟
自然的干扰将周期性改变许多生态系统的景观结构,但对全球气候变化将如何通过干扰区域的改变来影响景观结构还了解甚少。必须加深对大气层变化与能缓冲干扰的生态系统中景观结构变化之间相互关系的理解。这涉及到三个特定的理论问题:
(1)在广泛的干扰下对空间异质的影响是什么?
(2)对于各种干扰类型,景观结构预期的时间性变化是什么?这些变化将受到气候变化怎样的影响?
(3)空间和时间尺度的选取对景观结构稳定性的监测具有怎样的影响?
3、 景观生态学中的系统过程
生态过程(例如:干扰/恢复领域性及竞争)与非生物空间因素(例如:地形及土壤)相互作用产生空间复杂的景观生物格局。这些格局通过确定适宜的栖息地及资源限定了生物区系的范围。而生物的相互作用反过来又通过消耗资源及改变恢复速率使这些格局发生变化。这些格局和过程的相互作用(过程产生格局,格局作用于过程,二者的关系又依赖于尺度)形成了一个有关普通生态学及特定的景观生态学的基本的课题。
目前开发了在各种空间和时间尺度上将格局和过程一体化的理论途径。一整套模型及景观分辨尺度将用于研究生态系统格局的变化对其生态学功能的影响。 生活史理论通常讨论的是有机体如何面对生殖和死亡的时间表,做出决策以便在这两者之间实行交换,从而寻求“适合度”最大。但是在行为生态学中很多重要的行为决策,例如取食,躲避捕食者,领域防卫,迁移,社会行为等,都不适合于经典的生活史理论的框架,然而这些行为又都影响他们的存活与繁殖,因此又似乎类似于传统的生活史理论。这两个分支学科都是研究有机体对环境的适应,而又在很大的程度上依赖于数学模型。但是它们应用不同类型的模型,而且采用不同的“适合度”的定义。自九十年代以来,一种新的方法,主要是基于动态的状态模型越来越多地用于研究行为的适应性。事实上,这种新的方法,正在统一生活史理论和行为生态学。这种动态模型既能产生一般的原理又能得出关于某些行为或者生活史现象的可验证的、定量的或定性的预测。C.W.Clark应用别尔曼提出的动态规划方法,研究存在被捕食危险的取食行为,把种群的生长和繁殖结和到模型中去,显示了这种新方法的优越性。
行为生态学模型之所以受到越来越多关注的另一个原因是,最近十年来生物多样性的保护受到人们的普遍重视。正如Tim Caro所指出“个体行为的知识潜在地改变人们对该种群在破碎化生境中的命运以及种群对捕猎和其他干扰反应的认识,改变人们对物种再引入,种群监测以及建模的认识,个体行为的研究甚至帮助我们了解人类将怎样采取保护对策”。在经典的有关海洋渔业捕捞的生态经济模型中,把个体看成是相同的,但是实际上个体对种群的潜在生产力是大不相同的。例如对一雄多配的哺乳动物,过多的雄性往往不利于种群的繁殖。而在单配种中雄性往往帮助抚育后代,雄性的被捕获,即降低了种群的内禀增长率。此外对某一性别的过度捕杀,例如对非洲雄象的捕杀,导致雌象很难找到配偶。这种“阿利效应”在种群模型中受到特别重要的关注。 最近,三方面的进展深深影响着生态学中的建模:第一,“混沌理论”告诉人们非线性系统的短期预测将是困难的,而长期预测是不可能的;第二,生态学家开始认识到在生态系统中个体之间的局部相互作用是很重要的;第三,计算机的能力和其软件的进展,使得计算机成为生态建模最主要的工具。这三者的结合可能会对生态学理论产生深远的影响。
理论生态学家长期以来试图在生态学中寻找类似于物理学中牛顿定律那样的基本定律,然而“混沌现象”告诉人们系统初始值的微小差异,会导致系统路径的千差万别,这意味着系统的历史对它的未来有决定性的作用,因此系统的某一特别行为的原因,很可能出自历史的偶然,因此要知道一个动态系统将如何运动,只有精确地模拟它,这也就是基于个体的模拟可能是仅有的发现这类动态系统本质的方法。生态学转向基于个体的模型表明,生态学家已经认识到模型既要包括生物学的本质,又要认识和接受生态系统非线性的特性。
在生态学中基于个体的模型可以被看作是还原论方法的应用,系统的特性可以从组成系统的各成分的特性以及它们的相互关系中得到。在科学的发展历史中,还原论方法已广泛被证明是非常有用的,那么它们有理由相信在生态学中也应如此。实际上最近在进化生态学和行为生态学中的进展已证明了这一点。 湿地生态过程是指湿地发生与演化过程,湿地的物理、化学和生物过程。
湿地发生与演化过程研究包括从主导环境因素和主导过程入手研究湿地的发生条件,以系统动力学的理论与方法研究湿地演化的驱动因素和演变过程。通过稳定的湿地沉积物,特别是泥炭层的生物组合及地球化学特征恢复湿地及其周围环境的古生态演化。以遥感和地理信息系统手段研究湿地对于全球气候变化的响应。
物理过程研究包括湿地水分或水流的运行机制;湿地植被影响的沉积过程与沉积通量;湿地开发前后局地与区域热量平衡等。
化学过程包括氮、磷等营养元素在湿地系统中的流动与转化;湿地温室气体循环机制及其对全球变化的贡献的定量估算;湿地对重金属和其他有机无机污染物的吸收、鳌合、转化和富集作用等。
生物过程包括湿地的净第一性生产力;湿地生物物种的生态适应;湿地有机质积累和分解速率;湿地生态系统的营养结构、物流和能量流动等。 1、 关于生物多样性
根据联和国环境与发展大会报告,生物多样性可在3个概念层次进行讨论:生态系统多样性、物种多样性和遗传多样性。我国的一些专家将生物多样性划分为4个层次进行讨论:景观多样性、生态系统多样性、物种多样性和遗传多样性。生物多样性指数有两个组成部分即:绝对密度(丰富性)和相对丰度(均一性)。也就是说,多样性指数是丰富性和均一性的统一。在物种多样性动态模拟过程中,物种多样性包括物种生物量多样性和物种个体数量多样性。生物量多样性与景观多样性有较密切的联系,而物种个体数量多样性与基因多样性有较密切的关系。
2、多样性与稳定性关系——质疑生物多样性导致生态系统稳定性的传统观点
在生态学中多样性和稳定性的讨论几乎经历了半个世纪。这不仅因为它有重要的理论意义,而且还在于它涉及到资源管理,害虫防治,生物多样性保护等重大实际应用。今天在研究系统复杂性的时候,关于这个问题的讨论更显得重要。
本世纪70年代以前,生态学家企图发展一种联系稳定性和多样性的通用理论。例如,Odum的研究表明,通过食物网能量路径的数量是群落稳定性的度量。MacArthur认为,随着食物网中链环数量的增加,稳定性提高。Elton指出,如果生态系统变得比较简单,那么它们的稳定性就会变差。Hutchinson断言,多样性所提供的稳定性对所有适应性最强的大动物都是很有价值的。
自从Gardoer和Ashby及May向稳定性随物种多样性增加而提高的普遍看法提出挑战以来,一些科学家的想法逐渐开始转变。例如,Gilpin争辩说,他的研究结果不支持自然历史学家们多样性产生稳定性的普遍看法。Woodward认为,较高的物种多样性并不总是意味着较稳定的生态系统功能。McNaughton认为没有证据可以证明,较大的多样性由较高的稳定性来伴随。Beeby和Brenoan认为,高度多样化的群落似乎更脆弱。
然而,许多科学家仍一直认为,多样性产生稳定性。例如,Odum提出,较大的多样性意味着较长的食物链、更多的共生和对副反馈控制的更大可能性,这就减少了波动,并因此提高了稳定性。Watt的环境科学原则之一为:按照自然法规稳定的环境允许生物多样性的积累,进而增进种群的稳定性。McNaughton的研究表明,越多样的植物群落很可能更稳定。Glowka等的研究结果表明,物种多样性和生态系统稳定性有正相关关系。Tilman等根据他们在147个草地实验区的重复试验断言,生物多样性对生态系统稳定性有积极影响。
在景观单元多样性层次,许多生态学家认为多样性有利于区域生态环境安全。例如,在1969年,美国生态学家Odum提出了生态系统的发展战略,强调生态演替和人与自然的矛盾,即最大保护与最大产量的矛盾。战略的总体思想是:在有效能量投入和主要生存物理条件(如:土壤、水、气等)的约束范围内,使生态系统达到尽可能大和多样的有机结构。最舒适和最安全的景观是一个包含各种作物、树林、湖泊、河流、四旁、海滨和废弃用地的各种不同生态年龄群落的混合。德国生态学家Haber将这个生态系统发展战略运用于土地利用系统,并在1971年提出了分异土地利用的概念。经过多年的研究和实践,Haber于1979年提出了适用于高密度人口地区的分异土地利用DLU(Differentiated Land Use)战略:(1)在一个给定的自然区域中,占优势的土地类型不能成为唯一的土地类型,应至少有10%到15%土地为其它土地利用类型;(2)对集约利用的农业或城市与工业用地,至少10%的土地表面必须被保留为诸如草地和树林的自然景观单元类型,这个“10%急需规划”是一个允许足够(虽然不是最佳)数量野生动植物与人类共存的一般计划原则;这10%的自然单元应或多或少的均匀分布在区域中,而不是集中在一个角落;(3)应避免大片均一的土地利用,在人口密集地区,单一的土地利用类型不能超过8~10hm。
生物多样性与稳定性关系的讨论应建立在完全一致的稳定性概念基础之上。根据Grimm和Wissel的研究成果,在有关文献中可以发现70个不同的稳定性概念和163种定义。相关的其它名词还有永久性(Constancy),回弹性(Resilience),持久性(Persistence),阻抗(Resistence),弹性(Elasticity)和吸引域(Domain of attraction)等。虽然所有这些有关稳定性的概念和定义的基本点可归纳为系统受干扰时抵抗偏离初时态的能力和系统受扰动之后返回初始态的能力,但它们在出发点和一些细节上有相当大的差异。这些差异是引起多样性和稳定性关系争论的根源之一。
3、多样性与生产力关系——质疑生物多样性有利于土地生产力的提高
根据Darwin的结论,群落的生物多样性是由共生物种的生态位多样化产生的,由于更有效的资源利用,这种多样化将导致更高的群落生产力。经济合作与发展组织(OECD)也认为,农业在基因层次以生物多样性作为基因库来提高作物和牲畜的生产力。景观单元多样性的减少,会使病虫害增加,因此,导致了大量农药的使用,这样,农田和农田以外的生物多样性遭到农药的破坏,并往往会形成恶性循环。Tilman等在美国147个试验点的结果也支持Darwin的观点。即他们认为生物多样性对生态系统生产力和稳定性有积极影响。
近年来,一些西方国家提倡诸如农林系统的多样化种植系统。它基于4方面的原因:(1)较高景观单元多样性对光、水、营养等资源有较好的捕获能力;(2)可避免病虫害不断发生的恶性循环;(3)在多样化的种植系统中,一种作物的欠收不会对农民带来太大的影响;(4)农民不会对个别农产品价格的大幅涨落反应过于敏感。因此,多样化种植可保证农民收入的稳定性。然而,许多实验表明,由于养分增加而引起的生产力提高,几乎总是物种的数量减少。沿植物生产力自然梯度带的调查也显示了类似的结论。McNanghton在美国4个实验区的研究结果也表明,物种的丰富性与草地的生产力有明显的负相关关系。Lawtow和Brown在分析了有关历史研究成果后认为,物种丰富性不是生产力的主要决定因素。也就是说,在生物多样性与生产力的关系方面,也存在着不同的观点。
生物多样性实验的“隐藏处理(Hidden treatment)”是生物多样性与生产力关系争论的根源之一。换句话说,影响生物多样性及其功能的因素往往很多,但在许多生物多样性实验中,只观测部分因素或一种因素,因此,在解释实验结果时,一些影响实验反应的因素很可能就被忽略掉了。这种“隐藏处理”包括3种类型:(1)有意或无意地改变了生物或非生物条件,(2)非随机地选择了物种或景观单元,(3)在随机选择的物种或景观单元组群中,增大了起主导作用的物种或景观单元的统计概率。
4、生物多样性与景观连通性——质疑景观连通性与生物多样性有正相关关系
本世纪90年代中期以来,一些景观生态学家认为,景观连通性与生物多样性有正相关关系,但目前为数不多的研究还不能肯定这一结论的正确性。
自本世纪60年代初以来,连通性已作为一种数学工具被运用于许多研究领域,并解决了一系列有关问题。本世纪80年代初,连通性术语首次被运用于景观生态学研究。1997年以前,景观连通性研究仅限于其定义的讨论。
连通性包括点连通性、线连通性、网连通性和景观连通性。点连通性,线连通性和网连通性模型的研究已经历了较长的时间,它们在理论上已比较成熟。但景观连通性模型的研究才刚刚开始。1997年,Mladenoff等提出了一个景观连通性模型。但此模型在许多案例研究中,几乎大多数取值为无穷大。因此,Mladenoff等提出的景观连通性模型被给予了全面的改进。景观连通性被定义为在景观单元中动物迁栖或植物传播运动的平均效率。
在严格数学推理的基础上,构造了一个可用于所有多边形最大半径距离(从中心运动到最远点的距离)的通用数学表达式,并由此推导出了景观连通性模型。按照该景观连通性模型的构造过程,美国景观生态学家Forman的有关研究成果可表述为:景观连通性与生物多样性有正相关关系。1997年在欧洲召开的两次国际会议上,一个日本学者和一个欧洲学者也报告了相同的结论。然而,景观连通性和生物多样性关系的研究刚刚起步,它们是否确实正相关,有待于进一步研究。
综合有关研究成果,关于生物多样性需要人们继续深入研究以下4个问题;
(1)是否生物多样性导致生态系统稳定性;
(2)是否生物多样性有利于提高土地生产力;
(3)景观单元多样性模型取何值时为最佳土地利用结构;
(4)生物多样性是否与景观连通性正相关。
在研究这些问题时,应明确所针对的多样性层次、空间尺度和时间尺度。它们的正确研究结论将是土地战略管理的可靠理论基础。 1、遗传漂变假说
在竞争领域内,近年来生态学家们的兴趣又重新回到了对竞争排除法则的争论上(王刚、张大勇1996)。这次争论的命题可以很简明地表示为:“完全相同的种能否共存?”Zhang & Jiang (1993, 1995)提出在分析完全相同种的竞争过程与结局时必须考虑种群的遗传结构和进化动态,并且得出了“生态学上完全相同的种能够共存”的结论(又见Zhang & Hanski 1998)。如果这个理论成果能够得到证实,那么整个群落生态学理论都需要重新建立或调整。在此前提下,张大勇、姜新华(1997)提出了一个群落结构组建的新假说,即关于相似种种间共存机制的“遗传漂变”假说。这一学说将从理论上动摇生态学基本原理之一的高斯竞争排除原理。
2、时间生态位分化假说
植物群落结构组建和物种多样性维持机制是生态学界的难题之一,张大勇等围绕这一热点问题对青藏高原东部高寒草原群落进行多年的野外观测试验与理论分析,首次得出了植物种间“时间生态位分析是复杂群落结构组建和物种多样性维持的重要机制”的结论。
农业地质学是地学和农学相结合的桥梁
当然有关系。而且二氧化碳是导致全球气候变暖的根本原因之一!
俄罗斯方块,想必大家都非常熟悉吧。
其实长久以来,地球也一直在玩类似的一个叫做“消除碳方块”的游戏。
这些方块通过火山喷发、腐烂的植物、会呼吸的生物,以及海洋的表面,以二氧化碳的形式进入到大气层中。当它们被植物的光合作用吸收,被海洋吸收,或储藏在土壤和沉积物里时,则离开了大气层。就像俄罗斯方块里各种方块无缝叠加在一起之后,“砰”一下,全消失了!
这个“消除碳方块”的游戏被称之为碳循环,而它是地球上生命的动力来源。
不过这跟气候有什么关系呢?
是这样的,当这些二氧化碳在大气中等待被重新吸收的时候,它会将一部分太阳的热能锁住,否则这些热能就会逃逸到太空。这也为什么二氧化碳被称之为“温室气体”。
它形成了一个温暖的表层,也就是我们熟知的“温室效应”,才使得我们的地球不至于像火星一样冰冷。停留在大气层等待被重新吸收的二氧化碳越多,地球就越温暖。
虽然大气中的碳含量在冰河世纪和小行星撞击的影响下有过很多变化,但在过去的8000年里,我们熟悉的稳定的气候开始成形,也使得人类文明得以繁荣。
但是在大约200年以前,我们开始挖掘那些埋藏在地下的古老的碳。那些化石燃料、煤、石油和天然气是由那些早在人类进化以前就消亡了的埋藏在地下的动植物的遗体组成的。储存在它们内部的能量能够给工厂、汽车和发电厂提供能源。然而,燃烧这些燃料也给地球的“消除碳方块”的游戏不断释放出了新的碳方块。
与此同时,我们为农业砍伐森林,降低了地球了消除那些碳方块的能力。自1750年以来,大气中的碳含量已经增加了40%,并没有任何减缓的迹象。
就跟俄罗斯方块游戏一样,随着方块的增加,消除难度越来越大,恢复平衡也变得越来越难。
大气层中额外的二氧化碳给地球表面锁住了更多的热能,加速了温室效应,并导致极地冰帽融化。它们融化得越多,能反射的太阳光就越少,于是导致海洋升温的速度更快。海平面上升,沿海人口受到洪水的威胁,大自然的生态系统遭到破坏,极端天气越发频繁。
气候变化会以不同的方式影响不同的地方、不同的人。但最终,这是一个我们每个人都参与其中的游戏。
与俄罗斯方块游戏不同的是,一旦GAME OVER.我们不会有重来的机会。
几种生态农业模式
地学和农学从学科及服务领域都是不同的,但它们都以地球表层为研究对象。按科学发展趋势,要求多学科交叉,因为学科交叉本身就是一种科技创新,但是它们必须有可以交叉的空间,能够相互切入,融合一体构造新的学科,又能促进各自的深化和拓宽服务领域。农业地质学就是以土壤研究为主要切入点的农学与地学的交叉,是地学和农学相结合的桥梁。下面将从三个方面论述之。
(一)土壤质地
1.概念
土壤质地是根据其机械组成划分的土壤类型,有人主张“土壤机械组成就是土壤质地”。土壤质地的类别和特点,主要继承了成土母岩母质的类别和特点,又受自然的及人为的耕作、施肥、排灌、土地平整等成土作用的影响。故土壤质地是土壤的一种稳定的自然属性,反映了母质来源和成土过程的某些特征。因而常被作为土壤分类系统中基层分类依据之一,在制定土壤利用规划、土壤改良和管理时,必须考虑土壤质地特点。
2.不同质地土壤的肥力特点
按土壤的质地土壤一般分为砂土、壤地、粘土三种类型,它们的肥力等基本性质不同,因而在作物种植、管理和工程施工上就有很大差别。
(1)砂质土
以砂土为代表,也包括缺少粘粒的其他轻质土壤(粗骨土、砂壤),它们都有一个松散的土壤固相骨架,砂粒很多而粘粒很少,粒间孔隙大,降水和灌溉水容易输入,内部排水快,但蓄水量少而蒸发失水强烈,水汽由大孔隙扩散至土表而丢失。砂质土的毛细管较粗,毛细管水上升高度小,如地下水位较低,则不能依靠地下水通过毛细管上升作用来回润表土,所以抗旱力弱。只有在河滩地上,地下水位接近土表,砂质土才不致受旱。因此,砂质土在利用管理上要注意选择种植耐旱品种,保证水源供应,及时进行小定额灌溉,要防止漏水漏肥,采用土表覆盖以减少土表水分蒸发。
砂质土的养分少,又因缺少粘粒和有机质而保肥性弱,人畜粪尿和硫酸铵等速效肥料易随雨水和灌溉水流失。砂质土上施用速效肥料往往肥效猛而不稳长,前劲大而后劲不足,农民称为“少施肥、一把草,多施肥、立即倒”。所以,砂质土上要强调增施有机肥,适时施追肥,并掌握勤浇薄施的原则。
砂质土含水少,热容量比粘质土小,白天接受太阳辐射而增温快,夜间散热而降温也快,因而昼夜温差大,对块茎、块根作用的生长有利。早春时砂质土的温度上升较快,称为“暖土”,在晚秋和冬季,一遇寒潮则砂质土的温度就迅速下降。
由于砂质土的通气好,好气微生物活动强烈,有机质迅速分散并释放出养分,使农作物早发,但有机质累积难而其含量常较低。
砂质土体虽松散,但有的(如细砂壤和粗粉质砂壤)在泡水耕耙后易结板闭结,农民称为“闭砂”。因为这些土壤中细砂粒和粗粉粒含量特别高,粘粒和有机质很少,不能粘结成微团聚体和大团聚体,大小均匀而较粗的单粒在水中迅速沉降并排列整齐紧密,呈现汀浆板结性。这种质地的水田在插秧时要边耘边插,混水插秧,但因土粒沉实,稻苗发棵难、分蘖少。
(2)粘质土
包括粘土和粘壤(重壤)等质地粘重的土壤,而其中以重粘土和钠质粘土(碱化粘土、碱土)的粘韧性表现最为明显。此类土壤的细粒(尤其是粘粒)含量最高而粗粒(砂粒、粗粉粒)含量极少,常呈紧实粘结的固相骨架。粒间孔隙数目比砂质土多但甚为狭小,有大量非活性孔(被束缚水占据的)阻止毛管水移动,雨水和灌溉水难以下渗而排水困难,易在犁底层或粘粒积聚层形成上层滞水,影响植物根系下伸。所以,采用深沟、密沟、高畦,或通过深耕和开深线沟破坏紧实的心土层以及采用暗管和暗沟排水管,以避免或减轻涝害。
粘质土含矿质养分(尤其是钾、钙等盐基离子)丰富,而且有机质含量较高。它们对带正电荷的离子态养分(如 )有强大的吸附能力,使其不致被雨水和灌溉水淋洗损失。农民群众说“大粪不过丘,清水淌肥田”,正是说明粘质土的这一特性。
粘质土的孔细而往往为水占据,通气不畅,好气性微生物活动受到抑制,有机质分解缓慢,腐殖质与粘粒结合紧密而难以分解,因而容易积累。所以,粘质土的保肥能力强,氮素等养分含量比砂质土中要多得多,但“死水”(植物不能利用的束缚水)容积和难效养分也多。
粘质土蓄水多,热容量大,昼夜温度变幅较小。在早春,水分饱和的粘质土(尤其是有机质含量高的粘质土),土温上升慢,农民称之为“冷土”。反之,在受短期寒潮侵袭时,粘质土降温也较慢,作物受冻害较轻。
缺少有机质的粘土,往往粘结成大土块,俗称大泥土,其中有机质特别缺乏者,称死泥土。这种土壤的耕性特别差,干时硬结,湿时泥泞,对肥料的反应呆滞,即所谓“少施不应,多施勿灵”。粘质土的犁耕阻力大,所以也叫“重土”,它干后龟裂,易损伤植物根系。对于这类土壤,要增施有机肥,注意排水,选择在适宜含水量条件下精耕细作,以改善结构性和耕性。
此外,由于粘土的湿胀干缩剧烈,常造成土地裂缝和建筑物倒塌。
(3)壤质土
它兼有砂质土和粘质土之优点,是较为理想的土壤,其耕性优良,适种的作物种类多。不过,以粗粉粒占优势(60%~80%以上)而又缺乏有机质的壤质土,即粗粉壤,汀板性强,不利于幼苗扎根和发育。
3.控制不同质地土壤的主要因素
(1)组成土壤土粒的粗细决定土壤质地
如前所述,土壤的机械组成就是土壤质地,这里的“机械”是指构成土壤固相骨架的基本颗粒即土粒。据此可以认为土壤质地就是粗细不一的土粒组构。因此农学对土壤的土粒很重视,按其粗细对土粒的粒径进行了分级,建立了土壤的粒级制(表2-2)。
表2-2 常见的土壤粒级制
此表引自:黄昌勇,2001,土壤学,中国农业出版社。
土壤质地就是按粒级划分出砂土、壤土、粘土三个类型(表2-3)。
(2)土粒粗细(粒级)由组成的矿物控制
组成土粒的矿物分原生和次生两类。原生矿物质直接来源于母岩,其中岩浆岩类是其主要来源,其次为变质岩类;次生矿物是在岩石风化过程和成土过程中由原生矿物分解转化而成的。如铝硅酸盐类岩石的原生矿物风化转变为次生矿物如图2-2所示。
由于两类矿物来源的差异,在土壤土粒中颗粒大小也就有差异,一般是原生矿物主要存在粗粒级土粒中,次生矿物主要存在于细粒级土粒中。1986年殷细宽对华南的成土母岩为花岗岩的红壤的矿物组成的研究表明,粗粒级者多为原生矿物,细粒级者则多为次生矿物(表2-4)。
表2-3 中国土壤质地分类
此表来源同表2-2。
图2-2 粘粒矿物一般的风化顺序
(3)土壤(粒)矿物与母质母岩矿物有继承性
原生矿物的主要种类有石英、长石类、云母类、铁镁矿物类、碳酸盐类和硫化物类,它们风化后在土壤中的表现:
石英:只有物理风化使其破碎,故是土壤中砾石和砂粒的主要组成矿物。
长石类:各类长石均易化学风化,受二氧化碳及水的作用后正长石就会形成以高岭石为主的粘土矿物,斜长石除形成高岭石粘土矿物外,还可形成蒙脱石和埃洛石等粘土矿物;在某些条件下如干旱区,长石类受物理风化、崩解,在土壤中,特别在幼年期土壤中也可成为砂粒成分。
表2-4 我国华南几种主要土壤中各粒组之矿物组成
云母类:黑云母易于风化,在化学风化过程中常被分解,在土壤中形成铁的氧化物及粘土矿物;白云母较黑云母稳定,常裂成薄碎片出现在土壤中,只是当其处于强风化时才变为水云母、高岭石和其他简单物质存在于土壤中。
铁镁矿物:易于化学风化,风化后铁、镁游离成为氧化物在土壤中留下红棕色的氧化铁痕迹,其他部分则在土壤中形成蛋白石与埃洛石等。
碳酸盐类:是造岩矿物中最易溶解的矿物,尤其在生物活动繁盛、水中含CO2较多的地方,可形成易溶的重碳酸盐随水移走,故在土壤中常被全部淋失;但是当环境改变时,CO2析出,重碳酸盐又变为碳酸盐沉淀在土壤中而形成“假菌丝体”的新生体和碳酸盐结核。
硫化物:较易化学风化,一般是通过氧化作物形成硫酸盐和硫盐,同时强烈降低土壤的pH值。
上述矿物通过化学风化可在土壤中形成粘土矿物,常见的粘土矿物类如表2-5所列。
表2-5 我国土壤中常见的次生粘粒矿物[13]
在各类岩石中的原生矿物(也可称造岩矿物)的种类、含量是不同的,当其成为成土母岩受到风化作用和成土作用形成土壤后,土壤(粒)的矿物对母质母岩的矿物有继承性。主要表现:一是土壤(粒)的砂粒矿物,如石英、长石、白云母等自然来自母质母岩;二是土壤(粒)的粘粒矿物为原生矿物次生变化而来,其种类和含量与母质母岩的原生矿物种类和含量有关。因此土壤的粘粒矿物和母质母岩的原生矿物也具有继承性,只不过不像砂粒矿物那样直接。
(二)土壤养分
土壤养分是土壤化学组成中对作物生长发育形成产量所必需的那些元素,它是构成土壤肥力的基本成分。土壤养分与其成土母质母岩有直接和间接的继承性。
土壤的原生矿物含有丰富的常量和微量元素(表2-6),它们是作物养分的重要来源,如原生矿物中含有丰富的Ca,Mg,K,Na,P,S等元素是供给作物和土壤中的微生物所需养分。前已述及,原生矿物来自成土母岩,成土母岩类型不同,所含原生矿物也就不同,因而土壤的养分就不同。这一点,土壤工作者的有关研究有充分的说明,例如《湖南土壤》[4]一书在论述母岩对土壤化学组成时认为“母岩的矿物组成不同,其风化物发育而成的土壤在化学成分和矿质养分的含量上有显著差异”,指出湖南省主要的七大类成土母岩类型所形成的土壤在SiO2,Al2O3,Fe2O3,TiO2,MnO,CaO,MgO,Na2O,K2O,P2O5等有显著差异。并由此得出结论:花岗岩发育的土壤Al,K含量较高,Si,Mg,Mn较低;浅变质板页岩类发育的土壤P,K较丰富;砂岩类发育的土壤Si含量丰富,紫红色碎屑岩类发育的土壤矿质养分含量一般;石灰岩类发育的土壤P,K一般而富Mg,等等。
表2-6 土壤中主要的原生矿物组成
(三)微量元素科学的发育促进了地学与农学的结合
微量元素科学20世纪后期至21世纪初有了长足发展,涉及了许多领域,其中关于岩石-土壤-生物的相关性即地学与农学相结合的农业地质研究内容主要有以下几个方面。
1.微量元素与生物的关系
1)为生物所需要的一切元素都包含在地球表面上的(岩石圈)92个天然元素中,即位于周期表前面的元素。就人体而言,周期表中前面的12个元素占其总重的99.954%[6],0.006%为微量元素,则是位于周期表靠后面的元素。微量元素对于生物的作用,如以它的营养性和毒性来衡量,则在同一周期内(同一族内),自左至右(自上而下)其毒性随着原子序数的增大而增大,营养作用则随其增大而减少。因此,元素对于生物的作用服从元素周期律[7],而地壳中的元素分配与分布也服从元素周期律。
2)微量元素在生物体中所占比重虽然非常微小,但它在新陈代谢过程中对某些酶,蛋白质和激素的构成起着十分重要的作用,如锌至少有80种酶的活性与它有关[8]。
3)微量元素的营养学意义,就其重要性来说,并不亚于蛋白质、脂肪、淀粉、维生素,特别是它不能像维生素等那样能够在体内合成,因此它更是不能缺少的[8]。
4)作物所必需的营养元素在作物体内不论数量多少,都是同等重要的,任何一种营养微量元素的特殊功能都不能被其他元素所代替,这就是土壤学中的营养元素的同等重要律和不可代替律。
5)微量元素对于生物的作用服从伯特兰德最适营养浓度定律。这条定律是由法国生物学家G.伯特兰德(Bcrtrand)创立的,其内容是“植物缺少某种必须的元素时就不能成活,当元素适量时就能茁壮成长,但过量时又是有毒的”。
20世纪70年代初,英国地球化学家埃利克·汉密尔顿(Eric.Hamilton)领导的一个小组分析了几乎所有东西的最常见的60个元素,分析精度达10-9~10-12g,结果发现“地壳的元素丰度与任何一种人体组织中的元素丰度是相似的,在对数坐标中比较了岩石与人体血液中各元素的丰度,除了原生质中的主要成分碳、氢、氧、氮和岩石中主要成分硅外,两种样品中元素丰度的相关性是惊人的”(图2-3)。
汉密尔顿的发现表明:第一,人体组织的元素组成与岩石的元素组成息息相关,前者受制于后者。第二,人体组织获得元素是通过食物链,食物是大农业生产品及其加工而成,其元素的获得过程有如李正积所总结的营养元素动态平衡模式所示,即“岩石是元素的天然供应库→衍生成土壤对母质元素的继承性→植物选择性吸取元素生长发育”。这个模式最重要之点是指出岩石是各类作物所需元素的天然供应库。这一点与前苏联学者B.B.得伯罗乌利斯基所指出的“对于地面植物来说,分散元素的主要储备基地是成土母岩”是一致的[10]。第三,根据元素动态平衡模式,植物的元素是由岩石供给的,而岩石中的元素种类及其含量有差异,而此是决定于环境的地球化学条件的,在不同的地球化学环境中,元素及其组合是不同的,因而它供给的元素在其他条件相同的情况下,按伯特兰德最适营养浓度定律一般存在三种情况。第一种情况,在一些地区,能够适量供给某些作物使其茁壮成长而形成该地区的优势作物;第二种情况是在另一些地区,元素的供应不适量,使作物不能正常生长而形成该区的劣势作物;第三种情况则是在一些具有某些特殊元素或特殊的元素组合的地区,它能够满足某种作物的特殊需要而使作物具有独特的风味,即形成所谓名优特产。第四,由于微量元素对于生物有如此重要的作用,因此近年来从医学,营养学(包括对动物,植物)的角度出发,研制和生产了品种繁多的微量元素制剂,主要有微量元素药剂、微量元素营养剂、微量元素饲料添加剂、微量元素肥料等。其中微量元素肥料已成为农业生产必不可少。我国使用的微肥种类主要是铜、钼、锌、硼和稀土,它们的增产效应都很显著,如稀土微肥在国内许多地区施用其增产幅度和经济效益非常可观。
图2-3 人体血液和地壳中元素含量的相关性[9]
按上述各点,微量元素科学已经涉及许多领域,特别在生命科学中,微量元素已成为人体的必需。这些微量元素,经过了由岩石到土壤到植物及食物链构成的循环,因而微量元素科学的发展会促进它们之间的结合,首先是岩石与土壤的结合。
2.影响土壤微量元素的第一位因子是母质母岩
湖南省环境监测中心湖南土壤背景研项目在全省21.8万km2面积上采集土壤样、岩石样,共获有效数据21300个,以其分析土壤微量元素影响因子的重要性时,大多数微量元素是母岩母质为第一位(表2-7)。
表2-7 湖南土壤微量元素影响因子重要性顺序表
(四)农业化学和地球化学[5]
1.基本概念
(1)农业化学
农业化学诞生于19世纪40年代,是研究植物营养、土壤养分、肥料性质及其合理施用的理论和技术的科学。
“植物营养”是指植物在生长发育和形成产量的过程中,必须从环境中吸取的矿质元素。矿质元素分为常量元素(C,H,O,N,P,K,Ca,Mg,S)和微量元素(Fe,B,Mn,Zn,Mo,Cu,Cl等),它们对植物的营养作用主要在三个方面:一是在代谢过程中转化为植物体内结构并构成其重要化合物的组分;二是参与生化反应和能量代谢;三是在生化过程中起缓冲和调节作用。以上对植物营养的观点称之为“植物矿质营养说”。这之前一种广为流传的观点是腐殖质为植物唯一营养给源;另一种观点认为水是植物唯一的营养要素;还有一种观点则认为盐分是一切作物生活和生长的基础。这些观点是在当时化学分析方法很不完善,测试技术精度很不高的情况下得出的,是片面的甚至是荒谬的。“植物矿质营养说”的创立者是德国化学家、农业化学家、当代农业化学奠基人李比希(Justus Von Liebig,1803~1873),他通过大量的化学分析,指出能为植物吸收的养分是矿物质,在当时即称为“植物矿物质营养学说”;进一步的研究得出不断栽培作物,土壤中矿物质养分势必被消耗,如不把作物从土壤中摄取的那些养分归还给土壤,则土壤会变得贫瘠,这一论点被称之为“养分归还说”;李比希继矿物质营养说和养分归还说之后还创立了“最小养分律”。他指出,在作物生长所需各种矿质养分中,如有一个矿质养分含量最少,即使其他矿质养分虽然很丰富,也难以提高作物的产量,亦即作物产量受最小养分的限制。
“土壤养分”是指土壤中所含的植物所需的矿质元素。矿质元素在土壤中的含量称全量,全量只反映土壤对植物养分的供应潜力,而不是实际的供应水平。实际供应水平决定于矿质元素的形态,其形态可分四类:第一类为自由态,是可以溶解在土壤水溶液中的离子,称水溶态养分;第二类是弱结合态,是吸附于土壤颗粒表面,通过解吸可与自由态养分处于平衡状态,称可交换态养分;第三类为易活化的结合态,称易活化态养分;第四类为难活化的结合态养分。以上四类养分,第一类和第二类为有效养分,第三类为中等有效性养分,第四类为土壤储备养分。
“肥料”是用以调节植物与土壤间养分供需矛盾,为植物生长提供良好营养环境的物料。肥料一般分为直接肥料和间接肥料,直接肥料是含有植物所需的营养元素,对植物具有直接营养作用的一类肥料;间接肥料系用以调节土壤酸碱度、改良土壤结构、改善土壤理化性质为主要功效的肥料。
“肥料合理施用”是指能够适度提高土壤矿质营养元素以保障作物所需养分,是建立在作物营养诊断基础之上的。作物营养诊断是通过研究作物的形态、生理、生化等的变化,用以判断作物的营养状态。作物的营养状态可以分为缺乏、适宜和毒害三个范围。缺乏范围是指营养元素含量达到临界浓度之前,作物产量随元素补给而上升的范围;适宜范围是指作物产量不随营养元素含量提高而上升;毒害范围是营养元素过剩,使作物生长受阻,产量下降,甚至死亡。因此,根据作物诊断结果对缺乏范围应适宜施以直接肥料,对毒害范围应施以间接肥料降低元素的毒害作用。
综上所述,农业化学研究内容主要是植物营养、土壤养分、肥料和作物营养诊断。在现阶段还提出了对植物营养遗传学的研究,即是将植物营养生理、生物技术与统计学紧密结合在一起,使植物营养遗传学水平,由不同基因型营养特性差异的比较提高到分子生物学水平,为耐营养胁迫和耐逆境土壤的植物种类的栽培,即充分利用土壤的宜种性提供依据。
(2)地球化学
地球化学是研究地壳的化学成分和元素在其中的分布、分配、集中、分散、共生组合、迁移规律和演化历史的科学,特别强调元素的迁移集散。以农业(植物为主体)为目的的地球化学主要是表生作用地球化学,即风化带和土壤的地球化学,也就是元素在风化带和土壤中的迁移集散。风化带是指地壳岩石在风化过程中,活动组分被淋溶迁出后残留在原处的且被逐渐富集起来的稳定组分。土壤是风化带经过成土作用逐渐发育起来的产物。一般将风化带称成土母质,而紧靠其下未风化的基岩称成土母岩,但如果风化物经迁移在异地沉积或淤积,则其沉积物或淤积物也可经成土作用形成土壤,那么沉积物或淤积物就是成土母质,其下的基岩就不是成土母岩。例如第四纪更新统红土是第四纪红壤的成土母质;第四纪全新统河、湖冲积物是第四纪潮土的成土母质。
按以上叙述,表生带是由土壤、风化带和基岩(有或无)组成的,自上而下分为:
湖南农业地质及其应用
风化带——C层(土壤母质层)土壤物质的来源层。
基层——D层(土壤母岩层)土壤物质的原始来源层。
在风化和成土过程中,按地球化学原理,元素的迁移集散主要影响因素是岩石矿物本身的耐风化性、气候及地形条件,再就是生命活动。对以农业为目的的地球化学研究,必须强调生命活动对元素迁移集散的作用,它主要表现在三个方面:一是生命体(植物)对元素的吸收,早在20世纪初,B.N.维尔纳茨基就发现50~60种元素被植物吸收存在于生命物质中,到现在,通过研究,组成生命物质的元素已达70余种;二是植物吸取元素有强烈的选择性;三是植物的生命活动产生CO2、O2、NH3、H2O和腐殖质影响土壤环境的物理化学条件,进而影响元素的迁移集散。例如腐殖质的胡敏酸和富里酸可以形成pH 值为3~4,甚至更低的水溶液,致使许多金属元素在这种酸性介质中活化进人土壤水溶液中。又如腐殖质在地表常呈胶体状态且一般带负电荷,因而吸附金属阳离子;同时所有金属离子都能与腐殖质形成螯合物。胶体的吸附和螯合物能使金属离子固定在土壤中,从而降低了金属离子的活性。
2.农业化学的实质是一个地球化学过程
农业化学作为一门学科的诞生就是植物矿质营养说的提出,植物的矿质营养就是指植物所需要的元素。农业化学对所需元素的研究,包括对它的来源、含量、分布和可给性等方面的研究。指出其来源主要是成土母岩和成土母质,并由此决定了在土壤中的初始含量。经过风化和成土作用,对初始含量、结合特性、在剖面中的分布会有所改变,这一改变实质上就是元素迁移、集散的地球化学过程。
农业化学按土壤矿质营养元素含量对植物的缺乏、适宜和过剩以研究其肥料施用品种及其合理施用量,是一种人为作用土壤矿质营养元素的迁移集散,实质上也是一个地球化学过程。
农业化学目前强调对植物营养遗传学的研究并作为该学科研究发展方向,就是通过植物对营养元素的选择性吸收来了解其“吸取养分的显著基因型差异”和“抗逆境条件的生理反应存在极大基因型差异”,以合理开发土壤资源,按作物的土宜性(宜种性)提高农田生态系统的生产力,其研究重点或突破点仍然是以土壤矿质营养元素为主,故其实质也仍然是一个地球化学过程。
综上所述,在农业化学中的矿质营养元素的变化过程,实质就是一个表生地球化学过程。因此,应当吸取地球化学学科的经验,结合地球化学特别是表生作用地球化学进行研究,从而使农业化学研究更加深入,上升到一个新的高度。
3.以农业为目的地球化学研究的理论基础是农业化学
农业化学的经典理论“矿质营养说”、“养分归还说”、“最少养分律”、“植物营养遗传”等是用以阐明矿质营养元素在成土母质(母岩)—土壤—作物的转换过程中,对作物生长发育和形成产量和质量的意义,它的最终目的是落实在作物的产量和质量上。前已述及矿质营养元素在成土母质(母岩)—土壤—作物的转变过程实质上是元素迁移集散的表生地球化学过程,因而农业化学应引进地球化学,主要又是表生地球化学。如此,按农业化学进行的地球化学研究与以往的地球化学研究有什么不同呢?以往的地球化学,包括表生地球化学主要对各类地质体的元素分配分布的研究,是以矿产为目的的,如果涉及了对植物的研究,那么也只强调它作为一种生命活动对元素分布分配的影响,而不考虑对植(作)物产量和质量的影响。现在将其应用于农业,也要以植(作)物产量和质量为目的,那么就要与农业化学相结合,要以其经典理论为基础来论述表生地球化学过程,只有这样服务于农业才能有的放矢、具有实用价值,并能为农业部门所认同。
综上所述,土壤质地决定了土壤的肥力特点;土壤质地又决定于由其构成的不同粒径的土粒;土粒则是大小不一的矿物颗粒组成,其中原生矿物一般较粗成为土壤中的主要砂粒,由原生矿物衍变成的次生矿物成为土壤中的粘粒;原生矿物来源于岩石即成母岩,故成土母岩类型不同,原生矿物种类及含量就不同,以致使土壤质地不同;土壤养分也受岩石即成土母岩的影响,特别是土壤微量元素的影响因子第一位的是母岩母质,故成土母岩不同,土壤养分也就有差异。因此土壤的质地和养分都受岩石即成土母岩的影响,它们之间有直接和间接的继承关系。
岩石的矿物和化学组成是地学的岩矿学、地球化学的主要研究内容,由岩石风化到形成土壤是表生地球化学研究内容。作为地学原有领域讲其目的是为找矿服务,从而积累了非常丰富的系统的且时常更新的资料,特别是近年来开展的多目标国土资源大调查,针对农业环境有目的地做了大量工作。
土壤的矿物和化学组成即养分和质地是农学的土壤学、农业化学的重要研究内容,虽然对母岩也进行研究,但只是一般性的了解,有关这方面的内容多是引述地学的基础资料。
从现代农业出发,引进地学理论和应用丰富的地质资料,土壤学是首当其冲的重要内容,实际上只有这样,土壤学才能注入活力得以发展;同时地学也只有将其有关理论和资料,应用于涉及地球表层的其他学科如土壤学,也才能增加活力,拓宽服务领域,才能走出单一的为找矿服务而全方位地为社会服务。故而地学主动服务于农学,将其丰富的地质资料为土壤学所认同并在农业生产中予以实践,地学才会发展。因此地学与农学的结合使农业地质学应运而生,农业地质学就架构地学与农学相结合的桥梁,如图2-4所示;这种桥梁作用也可以土壤圈的构成得到说明。土壤圈是在土壤形成因素说及土壤地带性学说提出后,明确土壤是一个独立的历史自然体的基础上发展起来的,赵其国院士提出“土壤是岩石圈、水圈、生物圈和大气圈相互作用的产物(图2-5);土壤圈内各种土壤类型、特征和性质,都是过去和现在的岩石、大气、水及生物相互作用的记录与反映;土壤圈与岩石圈的矿质元素循环表现为以岩石为基础的成土过程或地质过程元素的迁移和物质循环(图2-6)”。显然,土壤圈是农学研究主要对象,岩石圈则是地学研究主要对象。现代农学(土壤学)和现代地学的发展需要共同地并同等重要地研究这两个圈,这是农业地质的主要任务之一,由此也足可说明农业地质学是架构地学与农学的桥梁。
图2-4 农业地质学是地学与农学结合的桥梁
图2-5 土壤圈的地位
图2-6 土壤圈的内涵
植物过冬的方法是什么?
一、珠江三角洲的基塘农业基塘农业是珠江三角洲人民根据当地的自然条件特点,创造的一种独特的农业生产方式。鱼塘的塘基上种桑、种蔗、种果树等,与鱼塘结合分别称为桑基鱼塘、蔗基鱼塘、果基鱼塘。基塘互相促进,以桑基鱼塘最典型。基塘农业是珠江三角洲农业的特色,集中分布在顺德、南海等市。 新的基塘农业模式和科学的方法,使农副产品更多样化,质量更提高,更具有进入港澳市场和国际市场的竞争能力。 珠江三角洲平原上的居民将低洼易有洪患之处挖成池塘饲养鱼类,挖出的塘泥堆于周围,称为“基堤”,基堤上种植果树、甘蔗、桑树、花卉等,如此既能防洪,又能增加收入,而农作物在加工过程中产生的物料,尚可投入池中作为饲料,是一种具有生态特色的农业经营方式。二、黄淮海平原的鱼塘—台田模式鱼塘台田模式也是借鉴基塘农业总结出来的,针对华北地区的地势低洼,渍涝严重,土壤水盐运动现象。鱼塘积水发展渔业,同事台田地势高,地下水水位低,利于地表水下渗,从而降低台田地表的盐度,以达到改良华北地区的中低产田的效果。在无法搞农业种植的重盐碱地里,根据挖塘(挖沟)渗盐碱的原理,挖塘筑台田,使修筑的台田盐碱下渗后能成为无盐碱良田,种植各种农作物或建立植桑基地养蚕等,再在塘里养鱼,这是一个改造盐碱地的良好成功模式。 鱼塘—台田模式与基塘农业的比较分析 相同点:都是立体农业模式。洼地挖塘,塘中养鱼,基上发展种植、林果业。不同点:农作物种类不同。珠江三角洲的基塘农业,基上种甘蔗,或种果树或种桑,并与当地农产品加工联系在一起,形成蔗基一制糖,果基—罐头,桑基—养蚕一缫丝业。而黄 海平原的“鱼塘一台田”,则形成鱼—果—粮、鱼—果—棉、鱼—果一菜、鱼一果一草(饲料)模式。 原因:两地地貌结构相似,都是地势低平的平坦地形,且都形成低洼和岗地、丘地交错起伏。低洼地掘土挖塘是有效利用土地的好办法;台田、基上发展种植业则是适宜的。利用的具体目的不同。珠江三角洲地处我国南部亚热带湿润地区,水热条件极为丰富,为充分利用水热资源而创造了“基塘农业”的生态模式,而黄淮海平原地处我国暖温带的半湿润地区,春旱、夏雨的气候极易造成干旱,并引起盐碱化,创建“鱼塘一台田”模式治理了湿地,改造了盐碱地,是一种避弊趋利的生态农业。 鱼塘—台田系统是水陆复合人工生态系统,是根据生态学原理和经济学原理进行规划、实施和建设的。鱼塘—台田作为一个有机整体,形成了相互利用,相互促进,多层次、多方位的立体生产方式,实现了微观上的专业化和宏观上的综合化的高度结合,可以保持生产中获得最佳的经济产出,保持和改善生态环境。辛店洼塘田系统开发立体种养模式,充分利用空间和水体,提高利用率,初步形成以鱼为中心的四个物种结构模式:(1)鱼、粮、果;(2)鱼、菜、果;(3)鱼、棉、果;(4)鱼、草(饲料)、果。鱼塘和台田各有自己的物种结构。从鱼塘物种结构来看,表层养鸭,上层养白鲢和鳙鱼,中层养草鱼,底层养鲤鱼、鲫鱼。草鱼吃草,其粪便可作水体中的浮游动植物的养料,并增加水体中絮凝物,成为鲢鱼、鳙鱼的饲料。鸭子在水面活动,排泄物落入水体,不断提供碳、氮和磷源,提高鱼塘鱼类天然饵料生物的产量。从台田物种结构来看,果—粮间作:粮食作物包括小麦、玉米、甘薯、大豆、花生、绿豆等,果树为苹果;果—棉间作:苹果树行间种植棉花;果—菜间作:苹果—蔬菜(韭菜、白菜、茄子、番茄、扁豆、青椒、黄瓜、西葫芦、冬瓜、蒜、大葱、萝卜、胡萝卜等)间作和葡萄—蔬菜间作。鱼塘—台田系统包括相互影响,相互促进的两个子系统。台面、坡径上的盐分、养分和有机物质通过地表径流,对鱼塘水质产生影响。台这种立体农业布局和以林果为主的土地利用结构模式,是一种建立在良性循环基础上的生态农业,有利于加强区域的水土保持,具有良好的环境效益;又有能促进当地当前和中远期受益的多种农副产品,提高农民经济收入,实现脱贫致富,有良好的社会效益。三、南方低山丘陵区的立体农业1.山区农业资源开发的背景我国的基本国情:我国山区面积广大,大约占国土面积的2/3。随着我国山区人口的增长,对山区资源的不合理利用和无节制的开发,使许多山区的生态遭到破坏,不仅影响山区社会经济的发展,而且使平原和城市遭遇自然灾害的危险性也越来越大。我国淮河以南、云贵高原以东、雷州半岛以北,东临海洋的广大地区,低山丘陵连片集中分布,被称为“南方丘陵山区”。南方丘陵山区的整治开发是我国国土整治的重要内容。2.南方丘陵山区的自然特征分析我国南方丘陵山区的自然地理特征,主要是和同纬度的世界其它国家和地区相比较,找到我国这个区域的特殊性。从全球看,南北回归线附近的广大地区分布着大面积的沙漠或干旱草原,被称为“回归沙漠带”。同纬度的我国南方丘陵,由于受亚欧大陆与太平洋之间海陆热力性质差异造成的东亚季风的影响,形成了温暖湿润的亚热带、热带季风气候,降水丰富,气候湿润,天然植被多为亚热带、热带常绿林,成为回归沙漠带的“绿洲”。受地形和地质条件影响,山区的温度、降水、土壤、植被等随海拔高度的变化而呈现明显的垂直地带性特征。山区矿产资源、水力资源丰富,具有多种经营之利。3.南方丘陵山区农业资源的优势以及存在问题分析南方丘陵山区的农业资源时要抓住主要影响因素:湿热的季风气候和崎岖的丘陵、山地地形。①优势:光、热、水资源丰富,而且大部分地区配合较好(夏季高温多雨,雨热同期),由气候带来的农业生产潜力较大;生物品种丰富多样,植物生长速度快,更新周期短,优势品种多;土地类型多样,自然环境多样,具有多种经营之利;河流众多,水资源丰富,有利于发展水电和农业灌溉。②存在的问题主要有:地形崎岖、交通不便、闭塞,文化教育相对落后;受旱涝灾害、低温冻害、干热风等多种气象灾害影响;生物资源利用品种单一,且保护不力,物种减少,濒危物种增多,没有把生物优势转化为经济优势;土壤中,贫瘠的低产土壤分布广泛,需要改造。许多地方植被遭到破坏,水土流失严重,某些地区山坡水土流失成为裸岩等难以利用的土地;降雨强度较大的暴雨较多,地表侵蚀作用强烈,地形复杂,增加了开发利用的难度;生态环境脆弱。南方丘陵山区开发历史悠久,人口密度较大,土地负载较重,人地关系矛盾明显。综上所述:本地区是我国农业发展潜力最大、开发难度较小的地区之一,并且具备劳动力资源充足,邻近商品粮基地、工业城市与海港,市场广阔等有利条件。4.水土流失与生态建设水土流失是南方丘陵面临的重大生态问题。水土流失严重的原因:①自然原因:山地丘陵为主,地形坡度大;南方降水多,降雨强度大,地表侵蚀作用强烈;②人为原因:因为能源短缺、人多地少而导致的过度开荒、乱砍滥伐,破坏了地表植被,加重了水土流失。水土流失造成的危害十分严重,经济损失巨大。封山育林是保持水土的有效措施。但是封山育林必须首先解决农民的生活能源问题。主要的措施有:①大力推广生活用煤;②推广省柴灶;③大办沼气和营造速生薪炭林;④在有条件的地方,积极开发小水电。5.山区农业资源的综合开发①目的:充分和合理利用低山丘陵区丰富的自然资源,使山区经济日益繁荣。②江西省泰和县千烟洲的立体农业模式:由山顶至山谷依次为“用材林──经济林或毛竹──果园或人工草地──农田──鱼塘”。这种“丘上林草丘间塘,缓坡沟谷果鱼粮”的立体农业布局和以林果为主的土地利用结构,是一种建立在生态良性循环基础上的生态农业。实现了经济效益和生态效益、短期利益与长远利益的协调并举。
植物过冬方法:
1、落叶:在冬天比较常见的是光 秃秃的植物立在那里,那是因为气温的降低让它们身体内发生变化,从而导致开始掉叶子。当天气渐渐寒冷,白天的时间缩短,于是它开始将叶子里的营养向枝条传送;
促使叶子开始凋落,植物进入休眠期。进入冬天后,植物将之前储存的营养物质“拿出来”,在酶的作用下,将这些营养物质分解,目的是增加植物细胞液的浓度,这样就不会轻易被冻坏。
2、调节身上的水分::植物的体内,时刻发生着生理变化。在冬天植物会降低能量的消耗,增强抗寒能力。就拿针叶树来说,它可以在零下40度生存,可见它极强的生存能力。
冬天室外很多植物会枯萎,但不要错以为植物死掉了,这是它们在冬天保护自己免受冻伤的方式。植物的枯萎是缩减水分吸收的表现,降低体内含水分量。
3、另外还有一些植物利用种子过冬;还有利用根系过冬的。还有一些植物既不将这些必须的营养物质藏在种子中也不藏在根系中,而是减少自由水抵留芽过冬。杨树、柳树种子过冬;向日葵、黄豆根过冬;大丽花、甘薯幼苗过冬;麦苗、菠菜各种植物又有各自防寒御冻的特殊本领。
扩展资料:
常见耐寒植物:
一、惠兰
通常来说,它是兰花中相当耐寒的一种兰花了,一般在零下7℃都可以生存,但是要注意保护好它的根部。而且,它的开花时间正是处于春节阶段,也是特别的喜庆。
二、郁金香
冬季它也可以生存得很好,通常在零下14℃都可以生存,即使严寒天气它依然可以安全过冬。注意多给它充足的阳光,保持适当湿润即可。
三、风信子
它即使在零下5℃依然能够生根生长,尤其注意不要将它们靠近有非常热的地方,否则会缩短它们的开花时间。
四、仙客来
它相对较耐严寒,冬季在0℃的低温也可以存活,保证不会被冻伤。冬天在室内养殖非常适合,可以把它们放在有阳光的地方,适度浇水,保持湿润即可。
五、火棘盆景
它能耐得住寒冬,即便是冬季的天气它也可以照常开花结果且不会掉落。适应能力较强,需要足够的光照,不过要适当为它修剪,以便它可以生长得更好更茂盛。
六、一叶兰
它比较耐寒,而且比较耐阴。冬季0℃它也可以正常生长,但是要注意不要长期把它放置在阴暗的环境生长,否则会导致它的叶子变黄。
七、观音莲
它比较顽强,适应性好,并且在严寒0℃也不会被冻死。浇水要适当,不要多浇水更不要太干旱,可以放在阳光充足的地方,适量施肥即可。