高温预警天气网

您现在的位置是: 首页 > 天气预报

文章内容

降水属于什么资源_降水属于气候资源吗

tamoadmin 2024-06-14
1.合理利用农业自然资源最基本的原则是指______。2.气候资源的基本特征3.气温和降水为什么是衡量气候的标准?4.气象(气候)因素5.台湾的气候特点是什么?

1.合理利用农业自然资源最基本的原则是指______。

2.气候资源的基本特征

3.气温和降水为什么是衡量气候的标准?

4.气象(气候)因素

5.台湾的气候特点是什么?

降水属于什么资源_降水属于气候资源吗

气候资源的特点:气候资源属于可再生资源。

与其他资源相比共同点

气候资源与其他资源相比的共同点

1.能为人类生产生活提供原料、能源和必不可少的物质条件。

2.要开发利用气候资源,就要有一定的技术条件和资金投入。

与其他资源相比不同点

气候资源与其他资源相比的不同点

1.气候资源是普遍存在的。

2.气候资源的数字特征。气候要素只有在一定数字范围内才有资源价值。

如:农业生产

——对日照、温度、降水有一定的数值要求。

商品贮存、工业产品的质量

——温度、湿度有一定的适宜数值范围。

3.气候资源是一种变化中的资源,有较大的变率。

如:光、热、降水等都有周期性和非周期性的变化。

合理利用农业自然资源最基本的原则是指______。

水分主要通过海水蒸发进入大气,并由气流输进大陆后,以降水的形式到达陆地表层,形成多种多样性和五光十色的水气现象。

降水与温度是地球上产生各种气候带与气候区的原因,当前人们所说的气候变化主要指的就是长时期里温度与降水的变化。降水的强度与持续的时间对生产生活有决定性影响,也是风调雨顺或旱涝灾害的主要原因。

天气气候与水分循环在正常情况下,有利于生产的发展。但是,在几千年的历史里累次出现人们难以适应的异常现象,这就是灾害。

涝灾就是降水量超过农业生产承受能力的上限,旱灾则是低于需水量的下限,热害是温度高于生产承受能力的上限,冷害则是农作物难以忍受的下限。

因此,几千年的历史既是人们开发利用天气气候与水资源的历史,也是人们同旱涝与冷热灾害的斗争史。夏禹治水与羿射九日等传说故事就是人们对古代灾害的回忆与想象的文学表现。

美好地球上的天气、气候与水都是宇宙中极其珍贵的资源,从某种意义上说,灾害从反面反映了这种资源的价值,告诉人们如何去认识和珍惜自然给予人类的这种恩赐。

气候资源的基本特征

合理利用农业自然资源最基本的原则是指因地因时制宜。

农业自然资源介绍:

指自然界可被利用于农业生产的物质和能量来源。一般指各种气象要素和水、土地、生物等自然物,不包括用以制造农业生产工具或用作动力能源的煤、铁、石油等矿产资源和风力、水力等资源。

查明不同地区农业自然资源的状况、特点和开发潜力,加以合理利用,不但对发展农业具有重要战略意义,而且有利于保护人类生存环境和发展国民经济。

气候资源:

即太阳辐射、热量、降水等气候因子的数量及其特定组合,太阳辐射是农业自然再生产的能源,植物体的干物质有90~95%系利用太阳能通过光合作用。合成。水既是合成有机物的原料,也是一切生命活动所必需的条件;陆地上的水主要来自自然降水。

温度也是动植物生长发育的重要条件,在水分、肥料和光照都满足的情况下,在一定适温范围内,许多植物的生长速率与环境温度成正比。因此,气候资源在相当大的程度上决定农业生产的布局、结构以及产量的高低和品质的优劣。

农业气候资源通常是采用具有一定农业意义的气象(气候)要素值来表示。例如,热量条件以生长期长短、总热量多少以及热量的季节分布和强度等表示;其中生长期和总热量分别指植物生长起止温度之间所经历的天数和日平均气温的积累值(积温);

热量强度指最热月和最冷月的平均气温、平均极端最低气温或气温日较差等。热量条件能否满足作物生长需要,还与其季节性变化能否与作物生育动态相适应有关。降水同农作物生育和产量形成有密切关系的值是降水量、降水日数、降水变率、相对湿度等。

有时还可以综合因子表示,如用干燥度,即最大可能蒸发量对同期降水量的比值来表示干湿程度等。用以表示光照条件的,有太阳辐射强度、光合有效辐射、日照时数、日照百分率等。

各个气候因素之间相互联系、相互制约,如雨日多,光照便少,温度也偏低。因此,在评价气候资源时,还必须考虑它的组合特征。

气温和降水为什么是衡量气候的标准?

太阳能资源

太阳能资源丰富、光合生产潜力高

中国的太阳能资源除川黔地区外,其余大都相当或超过国外同纬度地区,与美国相当,略高于日本。高值和低值中心处于22~35°N之间。即青藏高原高值中心,其南部光能接近世界上最丰富的撒哈拉沙漠,拉萨有“日光城”之称。低值中心出现在四川盆地。我国主要农业区,作物生长期间的光合有效辐射量多,为作物高产提供了充足的光能。青藏高原生长期短,能为植物提供的光合有效辐射量为全国最低。

热量带亚热带和温带

热量带多,亚热带和温带面积大

中国是世界上热量带最多的国家,由南往北相继出现热带、南亚热带、中亚热带、北亚热带、南温带、中温带、北温带。青藏高原还有高原温带、高原亚寒带和高原寒带。中国东部主要农业区面积较大,其中亚热带和中、南温带约占全国陆地总面积的42.5%,其热量与美国主要农业区相近似。≥10℃积温,在40°N地区比日本略多,与地中海气候地区相近;在30°N地区,比地中海气候地区多500℃,比西亚、南亚、非洲等地少600~1000℃。

季风气候显著影响

热量资源的季节变化十分明显,大部分地区四季分明,农事活动依赖节气的更迭十分敏感。中国东部与世界同纬度相比,冬季过冷,夏季偏热,而且纬度越高越明显,冬季比夏季突出。夏季偏热,一年生喜温作物(水稻、玉米等)可种植在纬度较高的东北地区,有利扩大喜温作物种植面积和提高复种指数。但冬季过冷,却使越冬作物或多年生亚热带和热带经济果木林的种植北界偏南。这一热量特点也是形成我国种植制度多样性的原因之一。

下垫面复杂多样

造成了气候资源的再分配中国山地丘陵约占全国面积的2/3。境内地形复杂,较大山脉的走向、地形起伏、加上离海远近等因素的影响,造成了光、热、水资源的重新分配与组合,使得有些地区非地带性的影响超过地带性影响。有出现“气候区地”现象和“十里不同天”的说法。例如,西南部金沙江河谷的巧家、华坪、元谋一带,虽处于中亚热带范围,但却出现南亚热带气候,≥10℃积温高达7000~8000℃,最冷月平均气温在12℃以上,全年基本无霜。又如地处低纬高原的云南,由于纬度增加和海拔高度增高相一致,使南北不到10个纬距的范围内相继出现热、温、寒带的气候及相应的植被。一般在海拔2300~2500米的高寒区,以耐寒作物为主,1300~1500米高度为中温带,为一年一熟或二年三熟区;1300米以下为低热带,为一年二熟或三熟区。中国境内有些东西走向或东北—西南走向的高大山脉,对北来冷空气和南来暖湿气流有显著的屏障作用,是山体两侧水热状况显著差异的分水岭。例如大兴安岭两侧年平均气温相差2~4℃,≥10℃积温相差300~1000℃,年降水量可相差100~200毫米,成为由农区向牧区的过渡地带。天山山脉成为新疆分割为干旱南温带和干旱中温带的天然分界线。秦巴山系是标志中国南方与北方气候的分界线,也是水分盈亏平衡为零的界线,它标志北方旱地农业与南方以水田为主的农业的交接带,又是作物是否休眠越冬的分界线。尤其是该山体的屏障作用使四川盆地冬暖十分显著,盆地1月平均气温比东部平原同纬度地区偏高3~4℃,≥10℃积温多300~500℃,无霜期多40~60天,若经海拔订正后的增温效应,则相当于使四川盆地南移5个纬距的位置。山区的热量资源随海拔高度的变化很明显。一般每升高100米,年平均气温下降0.51℃,≥10℃积温减少170℃,生长期约减少4~6天。

特殊地形的热量效应

也不可忽视。例如亚热带山区的一些山腰,冬季有逆温现象,多存在暖带和温暖小区;一些大的水体(湖泊、水库),对周围有调温效应,这都有利于果林和作物避寒越冬。但在低凹地形,冷空气易堆积在谷底,形成冷空气“湖”,使作物易发生霜冻害。

降水资源分配不均衡

干湿界线与等降水量线相近与全球比,我国降水量不算丰富。粗略估计,中国平均年降水量约为648毫米,较全球陆地平均年降水量800毫米约偏少19%,比亚洲平均年降水量740毫米偏少12%,在纬度相同的日本、朝鲜某些地区的年降水量比我国要多。中国降水的主要水汽来源于太平洋,年降水量的分布趋势自东南沿海向西北内陆递减,等雨量线大体呈东北—西南走向。按这一走向的年降水量400毫米等值线相当于半干旱与半湿润地区的分界线;250毫米年降水量等值线又相近于干旱与半干旱的分界线;横穿东部的900毫米年降水量等值线是东部地区半湿润与湿润地区的分界线。

降水量的区域分布极不均衡。西北内陆流域面积占全国总面积的36.4%,年平均降水量仅为164毫米,全年总降水量只占全国的9.5%;而我国东南部外流流域面积占全国总面积的63.7%,平均年降水量达896毫米,其全年总降水量占全国的90.5%。

中国降水量夏季多、冬季少,这是季风气候的一个重要特征。各地降水季节分配的差异很大,尤其北方雨季短,降水明显地集中于夏季。因此,采取季节调水措施是防旱的重要对策之一。

雨热基本同季

夏季光、热、水共济,气候生产潜力大中国大部分地区气温与降水的季节变化基本同步,这是农业气候资源的一种优势。夏季温高雨多,光合有效辆射量大,为植物旺盛生长提供了十分有利的条件,气候生产潜力高。各地雨热同季的情况有所不同,中国北方,春季升温快,夏季温度高,6~8月≥10℃积温占全年的50%以上,同期降水量占全年的60%以上。江淮及其以南地区,6~8月≥10℃积温和降水量均占全年的30~40%,雨热同季时间长,故复种指数高。云南和青藏高原地区,年内气温变化较平缓,降水集中程度高于温度,水热配合稍差,如云南6~8月积温只占全年的20~30%,但同期降水量占全年的60%以上;青藏高原6~8月积温占全年的55~65%,同期降水量占全年的60~80%。

热量和降水量的年际变化较大,易发生低温冷害或旱涝。据著名气象学家竺可桢先生考证,中国在5000年的历史长河中,有多次的冷期和暖期,曾造成农牧界线南北来回推移;历史时期气候冷暖变化也曾引起单、双季稻的种植界线南北变动两个纬距。近百年来,我国≥10℃积温变化有7~8年和2~3年的周期波动,尤以8年周期最明显。本世纪初期各地积温偏少,30年代中期开始增多,至50年代达到最高,随后逐渐下降,在60年代中期曾有一短暂的回暖过程,目前在平均值左右摆动。近30年间,各地最暖年与最冷年的热量状况之差是:≥10℃积温的差值约在500~1100℃之间;≥10℃持续日数的差值在30~60天之间。≥10℃积温相对变率(积温距平绝对值的多年平均与平均积温的百分比)是,青藏高原为4~5%,东北、华北北部及西北地区大于3%,华南及云南南部小于1.5%。热量资源不稳定,可导致农业不稳产。例如,黑龙江省高温年与低温年的积温偏差平均为±300℃左右,这个变化幅度可导致产量增产或减产30%左右。

问题与挑战

多样的气候类型造就了中国丰富的生态系统类型与多样的气候资源利用类型。然而,在利用我国的气候资源推进我国实现可持续发展这一问题上,我们也不得不看到如下几个显著特点。

其一:由于中国以大陆性气候为主的特点,北方的广袤地域寒冷和水分不足常常成为生物生产的限制因子,丰富的光能资源与土地资源因此而得不到充分利用,制约着中国土地生产力的提高乃至经济社会的进一步发展。

其二:气候变化不仅仅是温度的升高,还极有可能是极端气候事件频次的增加与强度的增大。

研究表明:未来的气候变化会导致北方夏季风降水的年度间变异增大,意味着北半球的季风气候区有可能遭受几率更为频繁且强度更大的洪涝或干旱等极端气候事件。我国大部分为季风气候区,季风的进退直接影响着我国的洪涝与旱灾,给国民经济的发展带来不利影响。东亚季风以及东南和西南季风对我国的夏季降雨有着很大的影响,它们的变异必将导致我国农牧业生产的气候灾害损失加大,生产水平稳定提高的可能性大大降低。

因而,气候变化的不确定性,特别是气候变化对我国社会经济与生态环境不利影响甚至是灾变,直接影响着我国的可持续发展,甚至构成一定程度的威胁。

其三:我国在气候系统探测和气候要素精细观测等方面的基础建设与能力,以及应对气候变化的基础设施,离世界先进水平还有很大差距,对支撑我国实现可持续发展能力明显不足。现有的专业气象观测网在探测范围、要素、精度、分辨率等方面尚不能满足经济社会各领域发展专业服务的需求;技术装备科技含量不高,观测手段和设备落后;观测项目针对性不强,规范、标准不统一,既有一些交叉重复,也有诸多空白,如海上、荒漠和高山等地区和交通等行业的观测资料十分缺乏;观测领域亟需拓展与整合。如现在我国在风力资源丰富的地区也还没有开展亚米级的风场观测,无法为风力资源的开发提供精细的气候资料与气象保障服务。

中国在针对冰雹、强降雨、强风暴、暴雪等极端天气气候事件的高时空分辨率的预报、预测能力上还存在有明显的不足与缺陷。针对上述特点,应该合理利用中国的气候资源,加强气候变化及其影响的科学研究,提高与改善气候科学为中国经济社会发展的保障能力。

气象(气候)因素

气候中最重要的要素是气温和降水,影响这两个气候要素的因素就是影响气候的主要因素。?

1、纬度位置:

世界气温从低纬度向高纬逐渐降低。?太阳辐射是大气运动最根本的能源。由于太阳辐射在地球表面不同纬度上分布不均匀,使地球上获得的热量随着纬度的增加而减少,这是造成气候差异最基本的因素。一般来说,低纬度获得的太阳辐射多,气温高,高纬度获得的太阳辐射少,气温低。

2、海陆位置:

世界降水分布时的四个地带:赤道多雨带、副热带少雨带(东岸多雨)、中纬度多雨带(内陆少雨)和极地少雨带。

这里我们重点说一说中纬度多雨带,为什么内陆少雨,(因为离海洋遥远)。我们讲了形成降水首先需要有充足水汽。一般来说,充足的水汽就能带来丰富的降水。而这个水汽主要来自海洋水蒸发,地球上71%的海洋表面上水汽源源不断地蒸发,它为大气提供了90%的水汽,相比之下,陆地蒸发的水汽就显得微不足道了,所以离海近的沿海或近海地带降水明显多于内陆地区。

反过来说,是不是沿海或者近海就一定多雨呢,也不是,我们曾经讲过世界降水量最少的阿塔卡马沙漠就是沿海地区,其之所以近海少雨是这里吹的是离岸的陆风,没有享受到海洋湿润的水汽。

3、地形因素:

地形影响气温,以及地形影响降水。海拔每上升1000米,温度下降6℃,这是地形,说得更确切一点这是地势高低影响了气温。地形和地势这两个词,在中学阶段很多时候是混用。我们这样来处理,地势高低是地形因素的一个方面。?在讲降水的时候,我们知道了迎风坡降水多,背风坡降水少,最明显、最极端的例子就是喜马拉雅山南坡是印度洋海风的迎风坡,降水量大,乞拉朋齐就是一个非常极端的例子。这也是地形对降水的影响。

这些影响因素都是自然因素,实际上,随着人类活动对自然界影响的加强,人类活动对气候的影响也越来越大。当然有些影响是有意的,有些是无意的。举个例子来说,我们在沙漠边缘种植大量的树木,随着成活树木的增多,这里的气候逐渐变得比原来湿润了,这是我们有意识地对气候产生的影响。当然,人类活动更多地对气候施加了无意的影响。比如,我们向空气中排放大量的二氧化碳,使温室效应增强,这是我们人类无意识得影响了气候。我们大量的使用河流的水源,造成像黄河断流这样的事实,以及黄河流域逐渐变干这样的事实,也是无意识的。总之,改变大气成分和水汽含量,向大气释放热量,改变地表的物理特性和生物学特性等都会造成对气候或大或小的影响。

台湾的气候特点是什么?

自然地理因素包括地形、气象、水文及植被等方面。由于各地区自然地理条件不同,决定了一个地区地下水的形成条件和变化规律,使各地区的地下水具有独特的性质。下面着重介绍气象因素和水文因素对地下水的形成和变化的影响。

自然界中水循环的重要环节———蒸发、降水,都与大气的物理状态密切相关。气象要素包括气温、气压、风向、风力、湿度、蒸发和降水等这些决定大气物理状态的因素。这种大气的物理状态称为天气。而某一地区天气的多年平均状态(用气象要素的多年平均值来表示)称为该地区的气候。气象和气候因素对水资源的形成与分布具有重要影响。对地下水的形成而言,虽然变化缓慢的气候因素起着极为重要的影响作用,但变化迅速的气象要素,则对地下水发生着显著的影响。这其中以降水、蒸发及气温的影响最大。

1.气温

大气具有一定的温度称为气温。一切复杂的天气变化,主要是气温条件不同而引起的。气温的变化会直接影响地下水温度的变化,水温变化会使地下水中的气体成分发生变化。例如由于温度的增高,气体活跃性增大,一部分气体就要从水中逸出,从而减少地下水中气体成分的含量;水中气体含量的降低,又会引起地下水化学成分的变化。此外,由于热力增加,地下水蒸发作用加强,水量就减少,水的浓度增加。

2.湿度

大气中水汽的含量称为空气湿度。大气中水汽含量变化不定,占空气总量的0.01%~4%,其中70%分布在0~3.5km的高度内。

水汽具有重量,所以有压力,因此,表示空气中水汽含量多少可以用重量或压力表示。湿度分为绝对湿度和相对湿度两种。

绝对湿度:为某一地区某一时刻空气中水汽的含量。采用重量单位时,以1m3空气中所含水汽克数(g/m3)表示,表示符号为m;用压力单位时,为空气中所含水汽分压相当于水银柱高度的毫米数或以毫巴表示,表示符号为e。

空气中绝对湿度变化很大,主要受气温、地表面性质等因素的影响。在温暖地带和辽阔水面或潮湿土壤上空,绝对湿度较大。在气温低的地区,空气绝对湿度则很小。

空气中可容纳水汽的数量和温度有密切关系,温度越高,可容纳的水汽数量越多;反之越少。某一温度下,空气中所能容纳的最大水汽数量,称为该温度下的饱和水汽含量。同样也可用重量单位或压力单位表示,两种情况分别用符号M和E表示。不同温度下的饱和水汽含量,见表1-2。

表1-2 不同温度下的饱和水汽含量

绝对湿度只能说明某一时刻空气中水汽含量的多少,而不能说明空气中的水分是否达到饱和,因此,又有相对湿度的概念。

相对湿度:绝对湿度与饱和水汽含量之比为相对湿度(r)。即

普通水文地质学

尽管空气绝对湿度不变,当气温下降时,则相对湿度增加。当相对湿度达到100%时,说明空气中水汽已达到饱和状态。空气中水汽达到饱和时的气温称为露点。当气温低于露点以下时,多余的水汽就要凝结发生降水。

3.降水

当空气的温度低于露点时,空气中多余的水汽就要凝结,以液态或固态形式降落到地表称为降水。气象部门用雨量计测定降水量,以某一地区某一时期的降水总量平铺于地面得到水层高度的毫米数表示。如某地区年降水量为1000mm,即表示降落在该地区的水量平铺在该区水平面积上,该水层高度为1000mm。

降水是水循环的主要环节之一,一个地区降水量的大小,决定了该地区水资源的丰富程度,对地下水资源的形成具有重要影响。大气降水渗入地下,对地下水的补给最为普遍,它是地下水最重要的来源。大气降水补给作用的强弱主要取决于两个方面:一是大气降水(特别是降雨、降雪)的强度、延续时间;另一方面是当地的入渗条件,如包气带的岩性和厚度、地形、植被等。如单位时间内所降下的雨量(降雨强度)大,延续时间长,则可能补给的地下水量就多;当入渗条件好,如地表岩土透水性好,地形平坦,植被良好,则入渗作用就强,补给地下水就多。

不同类型的降雨对地下水的补给是不一样的。

暴雨:历时短而强度大。按气象部门的惯例,当日降雨量大于50mm或12h降雨量大于30mm的降雨称为暴雨。这种雨一般笼罩面积不大,降雨过程短,一般说来降雨大部分来不及渗入地下而变为地表径流流走,而且往往强烈冲刷地表,甚至改变地表原来的结构。但在平坦的裸露砂砾石层地区和植被覆盖较好的地区,仍然可有相当多的水渗入地下。

细雨:历时不久,雨量小,雨滴小。这种雨往往一边下,一边极易蒸发,对地下水补给的意义不大。

*雨:历时久,强度小,笼罩面积大,在地表条件适当时,这种雨可以大量地补给地下水,对地下水的补给具有很大的意义。

暴*雨:历时久,平均强度大,常常酿成地面的洪涝灾害,它对地下水的影响也是显著的,它常常破坏原有的地表结构,对矿坑和某些工程带来威胁。

在分析大气降水的补给作用时,不但要考虑绝对的降水量,还应考虑降水的性质(如延续时间、强度),降水形式(液态、固态)和降水的类型等。在水文地质调查时,应收集降水的月平均、年平均及多年平均资料。

4.蒸发

水在常温下,由液态变为气态进入大气的过程称为蒸发。自然界的蒸发可以在水面、岩石土壤表面和植物的枝叶上进行。所以根据蒸发性质的不同,可分为水面蒸发、土面蒸发和叶面蒸发三种。蒸发量仍以水层厚度毫米数表示。

(1)水面蒸发

水面蒸发是指在一个地区,一定时间内地表水体表面水分的蒸发。其蒸发量的大小用水面蒸发皿来测定,其值以蒸发度表示,它表示一个地区蒸发能力的大小。

水面蒸发量的大小受许多因素影响,它与蒸发面的温度、空气饱和差、风速、气压等有关。蒸发面的温度越高,饱和差越大,风速越大,气压越低,则蒸发速度越快,蒸发量越大。

(2)土面蒸发

土面蒸发是指在一个地区,一定时间内土壤表面水分的蒸发。土面蒸发量除了气温、饱和差、风速、气压外,还与地下水的埋藏条件、土壤性质有关。一般当地下水埋藏较浅时,由于土壤毛细作用,将地下水吸至地表,蒸发量加大;埋藏较深,蒸发量就小。土壤颗粒越细,土壤层经常保持的水分就多,则蒸发量就大。

(3)叶面蒸发

叶面蒸发是指在一个地区,一定时间内某种植物叶面水分的蒸发,其蒸发过程称为蒸腾(蒸散)。

必须注意,气象部门提供的蒸发量,只能说明蒸发的相对强度(蒸发度),它不代表实际的蒸发水量。

最后介绍气压与地下水的关系和潮湿系数的概念。

大气的质量施加于地面的压力称为气压,常用毫米水银柱高度表示。在标准状态下的气压为760mmHg高度,即约相当于105Pa。

各地气压的差异引起空气流动,冷暖空气交锋,形成降雨。我国东部由于受季风的影响,故降雨大多集中于夏季,而冬季寒冷干燥。气压变化可影响地下水位升降,从而引起泉水流量变化。如气压下降,泉水流量有增高的现象。

潮湿系数(KB)是指一个地区的年降水量(X)与年蒸发度(Z)(水面蒸发值)的比值。

普通水文地质学

潮湿系数的大小反映了一个地区水分的丰缺和气候的干湿特性。KB越大,说明地区水量越丰富;反之,则蒸发越强烈,水分越缺乏。前者有利于地下水的形成,而后者不利于地下水的形成。地区的潮湿程度与潮湿系数的关系如下:

普通水文地质学

普通水文地质学

台湾的气候特点是高温多雨的气候 。

台湾岛南北狭长,四周流域广阔,北回归线恰好横穿岛的中部偏南地区,北部地区属亚热带气候,南部地区属热带气候。从平地到高山,随着海拔高度的增加,温度逐渐降低,形成了在同一时空内热、温、寒三带兼有的气候特点。

台湾气象部门根据各地气候特点,将台湾岛划分为9个农业气候区,即东北区、西北区、中彰区、云嘉区、西南区、南部区、东岸区、东部山区与中部山区,以利发挥各地气候资源的优势,避免和减少气候上的不利因素对农业生产带来的不利影响。

气候的个性特点:

气候,自然科学名词,是指一个地区大气的多年平均状况,主要的气候要素包括光照、气温和降水等,其中降水是气候重要的一个要素。中国的气候类型有:热带季风气候,亚热带季风气候,温带季风气候?,温带大陆性气候,高山高原气候。

气候是大气物理特征的长期平均状态,与天气不同,它具有一定的稳定性。根据世界气象组织的规定,一个标准气候计算时间为30年。气候以冷,暖,干,湿这些特征来衡量,通常由某一时期的平均值和离差值表征。